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1 Introduction

StumpWM is a manual, tiling X11 window manager written entirely in Common Lisp.
Unlike traditional window managers, StumpWM places windows in order to maximize the
amount of the screen used. The window layouts managed by StumpWM are defined by the
user in much the same way that windows are managed by GNU screen, or emacs.

Before StumpWM, there was ratpoison, another tiling window manager written en-
tirely in C. StumpWM grew out of the authors’ frustration with writing ratpoison in
C. Very quickly we realized we were building into ratpoison lispy-emacs style paradigms.
StumpWM’s goals are similar to ratpoison’s but with an emphasis on customizability, com-
pleteness, and cushiness.

1.1 Starting StumpWM

There are a number of ways to start StumpWM but the most straight forward method is
as follows. This assumes you have a copy of the StumpWM source code and are using the
‘SBCL’ Common Lisp environment.

1. Install the prerequisites and build StumpWM as described in README. This should give
you a stumpwm executable.

2. In your ~/.xinitrc file include the line /path/to/stumpwm. Remember to replace
‘/path/to/’ with the actual path.

3. Finally, start X windows with startx. Cross your fingers. You should see a ‘Welcome
To the Stump Window Manager’ message pop up in the upper, right corner. At this
point, you have successfully started StumpWM.

[Function]stumpwm &optional display-str
Default Values:

display-str (or (stumpwm:getenv "DISPLAY") ":0")

Start the stump window manager.

1.2 Basic Usage

Once you have StumpWM up and running, the first thing you might want to do is start
emacs. Type C-t e, or in other words Control + t followed by e. Now perhaps you want
an xterm. Type C-t c. Now you have some programs running.

To see a list of windows StumpWM is managing, type C-t w. The highlighted window
is the one you’re looking at right now. It’s the focused window.

All of StumpWM’s keys are bound to named commands, which can be executed not only
by keys but also from the input bar. Type C-t ; to open a command prompt. Now type
time and press return. Note, time can also be called by typing C-t a. Throughout this
manual you’ll find definitions for commands, functions, and variables. Any command you
see in this manual can be executed from the input bar or bound to a key.

At this point you probably want to switch back from your new xterm to emacs. Type
C-t C-t. This runs the other command. Type it again and you’re back to xterm.

Perhaps you’d like to see emacs and xterm side-by-side. Type C-t s. You have now split
the screen into 2 frames. For more information see Chapter 6 [Frames], page 49. To switch
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to the empty frame type C-t TAB. Now let’s pull the xterm window into this empty frame.
Type C-t w for a window listing. Find the xterm window. See the number beside it? Type
C-t followed by xterm’s window number.

Another common activity is browsing the internet. Type C-t !. The input bar pops up
again. You can now run a shell command. Let’s start a web browser: type firefox into
the input bar and press return.

Unfortunately, firefox probably isn’t wide enough because it’s in one of the frames.
Type C-t Q to remove all frames but the current one and resize it to fit the screen.

For a full list of key bindings, see Section 2.1 [List of Default Keybindings], page 11.

1.3 Basic Concepts

An introduction to some of the basic concepts used by StumpWM.

1.3.1 Screens and Heads

A screen is an Xlib concept representing a section of video memory onto which physical
monitors, called “heads”, are mapped. A screen can be thought of as an abstract rectangle
containing all the heads arranged in a particular layout.

With most modern systems, you’ll only have a single screen no matter how many heads
are connected to your computer. Each head will have its own frame, and you can move
between heads using the normal frame movement commands.

The layout of the heads within the screen can be specified in one of two ways: either at
startup using your system’s Xorg configuration files, or on the fly using tools like XRandR.
If the computer is booted with multiple monitors attached, but without specifying a layout
for them, they will all show identical output.

StumpWM will attempt to detect the layout of the heads once at startup, or any time
a RandR command is issued.

In rarer setups you may have multiple screens, with one head per screen. That means
that you’ll move between heads using screen movement commands (‘snext’, ‘sprev’, and
‘sother’) rather than frame movement commands.

1.3.2 Group Basics

A group is usually referred to as a “desktop” or “workspace” in other window managers.
StumpWM starts with a single group, called “Default”. Each group has its own config-
uration of frames and windows that is separate from and independent of other groups.
You can’t have different groups display in different monitors: when you switch groups, all
monitors switch to that group.

Each group contains an ordered list of frames.

1.3.3 Floating Group Basics

Within a floating group, windows behave more like they do in traditional window managers:
rather than being arranged into frames, they each have their own box, which can be freely
resized and repositioned, and allowed to overlap. Each window has a thicker border at the
top. Left click in this border and drag to move the window, or right click and drag to resize
it.
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A modifier key can be used to perform the move and resize operations by clicking in
the window itself instead of on its top border. The default modifier is super, and can be
configured with *float-window-modifier*.

[Variable]*float-window-modifier*
The keyboard modifier to use for resize and move floating windows without clicking
on the top border. Valid values are :META :ALT :HYPER :SUPER, :ALTGR and
:NUMLOCK.

Most of the window-switching commands listed below do not function in a floating group.
You’re restricted to ‘other’, the ‘select-window-*’ commands, and ‘windowlist’.

1.3.4 Dynamic Group Basics

Within a dynamic group, windows are organized into a master window and a window stack,
with one of each per head. When a new window is added to a head within a dynamic group,
that heads master window is pushed onto that heads window stack, and the new window
becomes the master window. When a head becomes to full (ie more windows cannot be
placed upon the stack) a overflow policy is used to determine which window to move to a
separate head or group.

[Command]gnew-dynamic name
Create a new dynamic group named NAME.

[Command]gnewbg-dynamic name
Create a new dynamic group named NAME in the background.

[Command]rotate-windows direction
Rotate all windows in the current group and head forward (clockwise) or backward
(counterclockwise)

[Command]change-layout layout
Change the layout of the current head and group.

[Command]change-default-layout layout &optional update-heads
Default Values:

update-heads :unset

Change the default layout for dynamic groups.

[Command]change-split-ratio ratio
Change the size of the master window of the current head and group.

[Command]change-default-split-ratio ratio &optional update-heads
Default Values:

update-heads :unset

Change the default size of the master window for dynamic groups.

[Command]retile &optional retile-floats
Default Values:

retile-floats t

Force a retile of all windows.
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[Command]select-floating-window &optional fmt window-list
Default Values:

fmt stumpwm:*window-format*

window-list nil

Select a floating window from a menu.

[Variable]*rotation-focus-policy*
A keyword determining what frame to focus after rotating the windows in a dynamic
group. Valid values are: :PRESERVE, meaning to stay on the same frame :FOLLOW,
meaning to follow the current window as it rotates :MASTER, meaning to always
stay to the master :MASTER-OR-FOLLOW, meaning to stay on the master, or if
initiating the rotation while focused on a stack window to follow that window.

When defining commands, anything restricted to tiling groups will also be active in
dynamic groups. To fully restrict it to tiling groups, call the function dyn-blacklist-command
on the command in question.

The head placement policy, overflow policy, master layout, and default split ratio of
dynamic groups are special in that they can only be modified once a dynamic group object
has been instantiated. To change their initial values the function set-dynamic-group-

initial-values can be used to modify these values before instantiating a dynamic group,
but not after.

1.3.5 Dynamic Group Index

Index of exported variables, commands, and functions defined in the dynamic group file.

[Variable]*rotation-focus-policy*
A keyword determining what frame to focus after rotating the windows in a dynamic
group. Valid values are: :PRESERVE, meaning to stay on the same frame :FOLLOW,
meaning to follow the current window as it rotates :MASTER, meaning to always
stay to the master :MASTER-OR-FOLLOW, meaning to stay on the master, or if
initiating the rotation while focused on a stack window to follow that window.

[Function]set-dynamic-group-initial-values &key head-placement-policy
overflow-policy master-layout default-split-ratio

Default Values:

head-placement-policy nil

overflow-policy nil

master-layout nil

default-split-ratio nil

Set the default initial values for the class allocated slots of dynamic groups. These
values are used only upon the first instantiation of a dynamic group.

[Function]dynamic-group-p thing
nil

[Function]dynamic-group-master-layout object
nil
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@ dynamic-group-head-layout

[Function]dynamic-group-default-split-ratio object
nil

@ dynamic-group-head-split-ratio

[Function]dynamic-group-overflow-policy object
nil

[Function]dynamic-group-head-placement-policy object
nil

[Function]dyn-blacklist-command cmd &aux
Add CMD to the command blacklist for dynamic groups

[Function]dyn-unblacklist-command cmd &aux
Remove CMD to the command blacklist for dynamic groups

[Command]gnew-dynamic name
Create a new dynamic group named NAME.

[Command]gnewbg-dynamic name
Create a new dynamic group named NAME in the background.

[Command]rotate-windows direction
Rotate all windows in the current group and head forward (clockwise) or backward
(counterclockwise)

[Command]rotate-stack direction
Rotate the stack windows in current group and head forward (clockwise) or backward
(counterclockwise)

[Command]swap-windows
Exchange two windows

[Command]change-layout layout
Change the layout of the current head and group.

[Command]change-default-layout layout &optional update-heads
Default Values:

update-heads :unset

Change the default layout for dynamic groups.

[Command]change-split-ratio ratio
Change the size of the master window of the current head and group.

[Command]change-default-split-ratio ratio &optional update-heads
Default Values:

update-heads :unset

Change the default size of the master window for dynamic groups.
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[Command]retile &optional retile-floats
Default Values:

retile-floats t

Force a retile of all windows.

[Command]select-floating-window &optional fmt window-list
Default Values:

fmt stumpwm:*window-format*

window-list nil

Select a floating window from a menu.

!!! exchange-window-with-master

[Command]hnext
Move focus to the next head in a dynamic group

[Command]hprev
Move focus to the previous head in a dynamic group

[Command]fnext-in-head
Focus the next frame in the current head

[Command]fprev-in-head
Focus the previous frame in the current head

1.3.6 Frame Basics

Frames are the boxes within which windows are displayed. StumpWM starts with a single
frame per head, meaning that each monitor shows a single window, full screen. If you
want to see windows side-by-side, you can “split” this frame in two, either vertically or
horizontally. These frames can be further split, creating nested boxes.

Technically speaking, frames live within a “frame tree”. When you split a frame, the
command actually creates two new frames side-by-side within the original parent frame.
This has implications for the behaviour of many commands that interact with frames.

Within this frame tree model, all frames either contain other frames, or contain windows,
or are empty. The command ‘fclear’ will hide all of a frame’s windows and show the
background.

1.3.7 Window Basics

Windows are created by programs to display their output. They take the shape of the frame
in which they are created. The windows within a frame are ordered by how recently that
window was focused. Only the top window in the stack is visible.

1.3.8 System Trays and the Mode Line

Many users choose to sacrifice a little screen real-estate to display some generally useful
information: the current time and date, wireless network connections, the names of open
windows, etc. StumpWM allows you to display this information in a bar across either the
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top or the bottom of the screen. There are two ways to do this: using external programs
called system trays, or using StumpWM’s own mode line.

System trays are a special kind of X window. They advertise to running programs that
they are available for embedding icons or notifications from those programs. They often also
display clickable icons for each open window. Common tray programs include the GNOME
panel or KDE’s kicker, or simpler programs such as stalonetray. Simply starting one of
these programs is usually enough for StumpWM to detect it, place it correctly, and allow
it to function normally.

The mode line, a concept borrowed from Emacs, is a built-in part of StumpWM. It is
essentially a string of text that can include a variety of information about your current
session, including the names of current groups and windows. Several modules provide
for different types of information. See Chapter 7 [Mode-line], page 55, (and the modules
directory) for more.

1.4 Manipulating Frames and Windows

Frames and windows are concepts borrowed from Emacs and the GNU Screen program,
and should be familiar to users of those programs. Others may find the terms a little
confusing. In other window managers, a “window” usually refers to a bounded box on the
screen, showing output from a single program. StumpWM splits this into two concepts: the
“frame” is the bounded box, the “window” is the visible output of a program.

One frame can contain many windows. As new windows are created, they appear at the
top of the window-stack of the current frame. This is also a little different from other tiling
window managers, many of which automatically create new frames for new windows.

Both frames and windows are ordered by when they were last focused. In the following
commands and documentation, the terms “next” and “previous” refer to this order. “Other”
refers to the most-recently focused object. Calling “other” commands multiple times will
bounce back and forth between the two most recent objects.

By default, StumpWM starts with a single group, called “Default”, which contains one
full-screen frame per head. You can split individual frames horizontally or vertically using
the ‘hsplit’ and ‘vsplit’ commands, bound to “C-t S” and “C-t s” by default. When a frame
is split, the next-most-recently-focused window is pulled into the new frame. See Chapter 6
[Frames], page 49, and Chapter 5 [Windows], page 37, for a complete listing of commands.

1.4.1 Moving Between Frames

Once you have multiple frames, you can move between them in various ways:

• fnext (C-t o or C-t TAB) jumps to the next frame in the current group’s frame list.

• fother (C-t M-TAB) jumps to the last frame that had focus.

• fselect (C-t f) displays numbers on each visible frame: hit a number key or click it
to move to that frame.

• move-focus (C-t <arrow key>) focus the frame in the direction of the arrow key
pressed.

• sibling (unbound by default) focus the frame from which the current frame was split.
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1.4.2 Manipulating Windows

Some commands change which window is currently focused, some move windows between
frames, and some may do both at once.

There are two general ways to move focus between windows: either between windows
belonging to the current frame, or between all windows within the current group. Within
a single frame:

• next-in-frame (C-t C-M-n) focus the next window in the current frame’s list of win-
dows.

• prev-in-frame (C-t C-M-p) focus the previous window in the current frame’s list of
windows.

• other-in-frame (C-t M-t) focus the most recently focused window in the current
frame’s list of windows.

• frame-windowlist (unbound by default) display a menu of windows in the currently-
focused frame, and allow the user to choose one. Alternately, the command frame-

windows will simply display the list of window names, with no menu choice available.

Within the current group, the following commands will go straight to the specified
window. They will never move a window from its original frame, and so may result in focus
switching frames.

• next (C-t M-n) focus the next window in the current group.

• prev (C-t M-p) focus the previous window in the current group.

• other or other-window (unbound by default) focus the most recently focused window
in the current group.

• next-urgent (C-t C-u) focus the next window that has marked itself “urgent”.

• select or select-window (C-t ') prompt for the title of a window and focus it. Works
with partial completion of the title.

• select-window-by-name (unbound by default) prompt for the title of a window and
focus it. Requires the window title to be entered exactly.

• select-window-by-number (C-t <number>) choose a window by number.

• windowlist (C-t ") display a menu of windows in the currently-focused group, and
allow the user to choose one.

The following commands always keep the current frame focused. If the selected window
is not in the current frame, it will be pulled there from wherever it is (hence the “pull”
naming scheme).

• pull or pull-window-by-number (C-t C-<number>) pull the numbered window into
the current frame.

• pull-hidden-next (C-t n or C-t SPC) pull the next currently undisplayed window in
the window list into the current frame.

• pull-hidden-previous (C-t p) pull the previous currently undisplayed window in the
window list into the current frame.

• pull-hidden-other (C-t C-t) pull the most recently focused, currently undisplayed
window into the current frame.
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The following commands move the current window from one frame to another, bringing
focus with them.

• move-window (C-t M-<arrow>) move the currently focused window in the direction
indicated by the arrow key.

• exchange-direction (unbound by default) prompt for a direction, then swap the
currently focused window with the top window of the frame in that direction.

1.5 Interacting with the Lisp process

Since StumpWM is a Lisp program, there is a way for you to evaluate Lisp code directly,
on the same Lisp process that StumpWM is running on. Type C-t : and an input box will
appear. Then type some Lisp expression.

When you call eval this way, you will be in the STUMPWM-USER package, which
imports all the exported symbols from the main STUMPWM package.

*mode-line-border-width*

Reads the value of *mode-line-border-width*.

(setf *mode-line-border-width* 3)

Sets the variable *mode-line-border-width* to 3.

(set-prefix-key (kbd "C-M-H-s-z"))

Calls the set-prefix-key function (and sets a new keyboard prefix)

1.6 Init File

Like other window managers, StumpWM’s configuration and startup state can be controlled
by an initialization file. Unlike other window managers, StumpWM’s init is not limited to
changing settings and keybindings. The init file is itself a Common Lisp program running
in a Common Lisp environment, so you can write your own hacks and make them a part of
your StumpWM experience.

On launch, StumpWM searches for an init file of different names and locations on your
system, and will use the first one found in this order:

• ‘~/.stumpwmrc’ is the classic UNIX-style configuration name;

• ‘~/.stumpwm.d/init.lisp’ is an Emacs-style location and name;

• ‘~/.config/stumpwm/config’ is the XDG standard;

• ‘/etc/stumpwmrc’ is a system-wide file giving all users a standardized environment.

StumpWM includes a basic ‘sample-stumpwmrc.lisp’ in its source directory. You can
use this as a template when you’re starting out: copy it to the above name and location
you prefer and edit it to suit your preferences.

It is possible to split your initialization among multiple files, if you call the additional
files from within an init file matching the names and locations listed above.

[Variable]*processing-existing-windows*
True when processing pre-existing windows at startup.
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1.7 Contact the StumpWM developers

The StumpWM home page is http://stumpwm.nongnu.org/.

The StumpWM mailing list is stumpwm-devel@nongnu.org which you can subscribe
to at https://lists.nongnu.org/mailman/listinfo/stumpwm-devel. It is the preferred
way of contacting developers for questions. If you have a bug report or patch, please open
an issue or pull request at https://github.com/stumpwm/stumpwm/issues.

The StumpWM IRC channel can be found on Freenode at #stumpwm (irc://irc.
libera.chat/#stumpwm).

http://stumpwm.nongnu.org/
mailto:stumpwm-devel@nongnu.org
https://lists.nongnu.org/mailman/listinfo/stumpwm-devel
https://github.com/stumpwm/stumpwm/issues
irc://irc.libera.chat/#stumpwm
irc://irc.libera.chat/#stumpwm
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2 Key Bindings

StumpWM is controlled entirely by keystrokes and Lisp commands. It mimics GNU Screen’s
keyboard handling. StumpWM’s default prefix key is C-t.

2.1 List of Default Keybindings

The following is a list of keybindings.

C-t d Select the window with the corresponding digit d

C-t C-d Pull the window with the corresponding digit d into the current frame

C-t n

C-t C-n

C-t Space Go to the next window in the window list

C-t p

C-t C-p Go to the previous window in the window list

C-t ' Go to a window by name

C-t " Select a window from a list and focus the window.

C-t C-g Abort the current command. This is useful if you accidentally hit C-t

C-t i Display information about the current window.

C-t f Select a frame by number

C-t s Split current frame vertically

C-t S Split current frame horizontally

C-t k

C-t C-k Sends a kill message to the current frame and the running program.

C-t K Kills the current frame and running program; like a kill -9.

C-t c

C-t C-c Run an X terminal; by default xterm

C-t e

C-t C-e Run Emacs or raise it if it is already running.

C-t t Sends a C-t to the frame; this is useful for applications like Firefox which make
heavy use of C-t (in Firefox’s case, for opening a new tab). This is similar to
how GNU screen uses C-a a.

C-t w

C-t C-w Prints out a list of all the windows, their number, and their name.

C-t RET

C-t C-RET Show all windows and let the user select one, make that window the focus.

C-t b

C-t C-b Banish the mouse point to the lower right corner of the screen.
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C-t a

C-t C-a Display the current time and date, much like the Unix command date.

C-t C-t Switch to the last window to have focus in the current frame.

C-t ! Prompt for a shell command to run via /bin/sh. All output is discarded.

C-t R If the screen is split into multiple frames, one split will be undone. If there is
only one split, the effect will be the same as C-t Q.

C-t o

C-t TAB If the screen is split into multiple frames, focus shifts to the next frame, where
it cycles to the right and then down; analogous to C-x o in Emacs.

C-t F Display “Current Frame” in the frame which has focus.

C-t ; Opens the input box. StumpWM commands can be run from here, and the
input history moved through.

C-t : Opens the input box, but all things typed in here will be sent to the Common
Lisp interpreter where they will be run as Lisp programs; thus, input should be
valid Common Lisp.

C-t C-h

C-t ? The help. These can be customized using the *help-keys* variable.

C-t - Hide all frames and show the root window.

C-t Q Removes all splits and maximizes the frame with focus.

C-t Up

C-t Down

C-t Left

C-t Right Shift focus to an adjacent frame in the specified direction. C-t Up will shift
focus up, if possible, C-t Down will shift downwards, etc.

C-t v Prints out the version of the running StumpWM.

C-t # Toggle the mark on the current window

C-t m

C-t C-m Display the last message. Hitting this keybinding again displays the message
before that, and so on.

C-t l

C-t C-l redisplay the current window and force it to take up the entire frame.

C-t G Display all groups and windows in each group. For more information see Chap-
ter 8 [Groups], page 61.

C-t Fn Jump to the corresponding group n. C-t F1 jumps to group 1 and so on.

C-t g g Show the list of groups.

C-t g c Create a new group.
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C-t g n

C-t g C-n

C-t g SPC

C-t g C-SPC

Go to the next group in the list.

C-t g N Go to the next group in the list and bring the current window along.

C-t g p

C-t g C-p Go to the previous group in the list.

C-t g P Go to the previous group in the list and bring the current window along.

C-t g ' Select a group by name or by number.

C-t g " Select a group from a list and switch to it.

C-t g m Move the current window to the specified group.

C-t g k Kill the current group. All windows are merged into the next group.

C-t g A

C-t g r Change the current group’s name.

C-t g d Go to the group with digit d. C-t g 1 jumps to group 1 and so on.

C-t + Make frames the same height or width in the current frame’s subtree.

C-t h k Describe the specified key binding.

C-t h f Describe the specified function.

C-t h v Describe the specified variable.

C-t h w List all key sequences that are bound to the specified command

C-t h c Describe the specified command.

2.2 Binding Keys

[Function]define-key map key command
Add a keybinding mapping for the key, key, to the command, command, in the
specified keymap. If command is nil, remove an existing binding. For example,

(stumpwm:define-key stumpwm:*root-map* (stumpwm:kbd "C-z") "echo Zzzzz...")

Now when you type C-t C-z, you’ll see the text “Zzzzz...” pop up.

[Function]undefine-key map key
Clear the key binding in the specified keybinding.

[Function]kbd keys
This compiles a key string into a key structure used by ‘define-key’, ‘undefine-key’,
‘set-prefix-key’ and others.

[Command]set-prefix-key key
Change the stumpwm prefix key to KEY.

(stumpwm:set-prefix-key (stumpwm:kbd "C-M-H-s-z"))

This will change the prefix key to Control + Meta + Hyper + Super + the z key. By
most standards, a terrible prefix key but it makes a great example.
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[Function]make-sparse-keymap
Create an empty keymap. If you want to create a new list of bindings in the key
binding tree, this is where you start. To hang frame related bindings off C-t C-f one
might use the following code:

(defvar *my-frame-bindings*

(let ((m (stumpwm:make-sparse-keymap)))

(stumpwm:define-key m (stumpwm:kbd "f") "curframe")

(stumpwm:define-key m (stumpwm:kbd "M-b") "move-focus left")

m ; NOTE: this is important

))

(stumpwm:define-key stumpwm:*root-map* (stumpwm:kbd "C-f") '*my-frame-bindings*)

[Variable]*root-map*
This is the keymap by default bound to C-t (along with *group-root-map* and ei-
ther *tile-group-root-map*, *float-group-root-map*, or *dynamic-group-map*). It is
known as the prefix map.

[Variable]*top-map*
The top level key map. This is where you’ll find the binding for the prefix map.

[Variable]*groups-map*
The keymap that group related key bindings sit on. It is bound to C-t g by default.

[Variable]*group-top-maps*
An alist of the top level maps for each group type. For a given group, all maps whose
type matches the given group are active. So for a tile-group, both the group map and
tile-group map are active.

Order is important. Each map is seached in the order they appear in the list (inactive
maps being skipped). In general the order should go from most specific groups to
most general groups.

[Variable]*exchange-window-map*
The keymap that exchange-window key bindings sit on. It is bound to C-t x by
default.

[Variable]*key-seq-color*
Color of a keybinding when displayed in windows such as the prefix keybinding in the
which-key window.

[Command]bind key command
Hang a key binding off the escape key.

[Command]unbind key
Remove a key binding from the escape key.

[Command]send-escape
Send the escape key to the current window.
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[Function]grab-pointer screen
Grab the pointer and set the pointer shape.

[Function]ungrab-pointer
Remove the grab on the cursor and restore the cursor shape.

[Variable]*banish-pointer-to*
Where to put the pointer when no argument is given to (banish-pointer) or the banish
command. May be one of :screen :head :frame or :window

[Function]final-key-p keys class
Determine if the key is a memeber of a class

[Function]help-key-p keys
If the key is for the help command.

[Function]cancel-key-p keys
If a key is the cancelling key binding.

[Variable]*editor-bindings*
A list of key-bindings for line editing.

[Variable]*numpad-map*
A keycode to keycode map to re-wire numpads when the numlock key is active

2.3 Modifiers

Many users have had some difficulty with setting up modifiers for StumpWM keybindings.
This is caused by a combination of how StumpWM handles modifiers and the default
modifiers list for many users’ X servers.

• My “Super” key doesn’t work!

This is most likely caused by having the Hyper and Super keys listed as the same
modifier in the modifier list.

$ xmodmap

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)

lock Caps_Lock (0x42)

control Control_L (0x25), Control_R (0x6d)

mod1 Alt_L (0x40), Alt_R (0x71), Meta_L (0x9c)

mod2 Num_Lock (0x4d)

mod3

mod4 Super_L (0x7f), Hyper_L (0x80)

mod5 Mode_switch (0x5d), ISO_Level3_Shift (0x7c)

The problem is in the line beginning with “mod4”. The way to set up the modifier list
correctly is to have just the Super key as the mod4 modifier. The following xmodmap

commands will do just that.

# clear out the mod4 modifier
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$ xmodmap -e 'clear mod4'

$ xmodmap

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)

lock Caps_Lock (0x42)

control Control_L (0x25), Control_R (0x6d)

mod1 Alt_L (0x40), Alt_R (0x71), Meta_L (0x9c)

mod2 Num_Lock (0x4d)

mod3

mod4

mod5 Mode_switch (0x5d), ISO_Level3_Shift (0x7c)

# add Super as a mod4 modifier

$ xmodmap -e 'add mod4 = Super_L'

$ xmodmap

xmodmap: up to 3 keys per modifier, (keycodes in parentheses):

shift Shift_L (0x32), Shift_R (0x3e)

lock Caps_Lock (0x42)

control Control_L (0x25), Control_R (0x6d)

mod1 Alt_L (0x40), Alt_R (0x71), Meta_L (0x9c)

mod2 Num_Lock (0x4d)

mod3

mod4 Super_L (0x73), Super_L (0x7f)

mod5 Mode_switch (0x5d), ISO_Level3_Shift (0x7c)

You can automate this by storing the commands in a file and calling xmodmap when
you start your X session.

$ cat ~/.Xmodmap

clear mod4

add mod4 = Super_L

If you use startx, modify your ~/.xsession or ~/.xinitrc file.

$ cat ~/.xsession

#!/bin/sh

xmodmap ~/.Xmodmap

exec /usr/bin/stumpwm

If you use a settings daemon from one of the major desktop environments (Gnome,KDE,
or Unity) you may be able to set keyboard modifiers from their respective configuration
GUIs. If not, xmodmap should always work if invoked at the right place.

• Handling Meta and Alt: when do I use M- and A-?

If you have no Meta keys defined (see the output of the xmodmap command), then
StumpWM will treat the M- prefix in keybindings to mean Alt. However, if there are
Meta keys defined, then the M- prefix refers to them, and the A- prefix refers to Alt.
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Most users will simply use M- to refer to their Alt keys. However, users that define
separate Meta and Alt keys will use M- to refer to the former, and A- to refer to the
latter.

• How can I set up a Hyper key and use it with StumpWM?

To set up a Hyper key, you need to do two things: bind a physical key to be a Hyper
key, and add that key to the modifiers list.

The following example shows how to bind the control key at the bottom-left of most
keyboards to be Hyper. This is useful if you’ve made Caps Lock into a control key, and
have no use for the bottom-left key.

$ xmodmap -e 'keycode 37 = Hyper_L'

$ xmodmap -e 'clear mod5'

$ xmodmap -e 'add mod5 = Hyper_L'

To use a different key for Hyper, replace the keycode “37” above. Use the xev program
to see the keycode that any physical key has. Refer to the section above on setting up
the Super key to see how to automate setting the Hyper key when you start X.

Now you can use H- as a prefix in StumpWM bindings.

(define-key *top-map* (kbd "H-RET") "fullscreen")

(define-key *top-map* (kbd "H-Left") "gprev")

(define-key *top-map* (kbd "H-Right") "gnext")

(define-key *top-map* (kbd "H-TAB") "other")

Since essentially no programs have Hyper bindings, you can safely bind commands to
the *top-map*.

[Variable]*all-modifiers*
A list of all keycodes that are considered modifiers

[Variable]*modifiers*
A mapping from modifier type to x11 modifier.

2.4 AltGr Keys

StumpWM uses the CLX client library for X11, which doesnt support the XKB extension.
As such support for Alt Graph must be handled specially.

Preliminary support for Alt Graph in StumpWM is done by registering AltGr as a
modifier key and specially handling it when it is a member of a key press’ state. By default
StumpWM treats AltGr key presses as a normal key and not a modifier, and this behavior
should not be changed unless necessary. To enable treating AltGr as a modifier, the user
must place the following in their stumpwmrc:

(register-altgr-as-modifier)

Additionally, the variable *altgr-offset* defaults to 2, which may be appropriate for the
users keyboard layout, or may not. Some users may have an AltGr offset of 4, or potentially
6. If, after calling register-altgr-as-modifier, keys on AltGr aren’t being registered
properly, then the offset may need to be changed. The user can check this explicitly by
finding a keysym that requires AltGr and passing it to keysym-requires-altgr. As an
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example, some layouts have ª on AltGr+l. In such a case, the following example would
return true when *altgr-offset* is correct:

(stumpwm::keysym-requires-altgr

(stumpwm::stumpwm-name->keysym "lstroke"))

[Function]register-altgr-as-modifier
Register the keysym(s) for ISO Level3 Shift as modifiers.

[Variable]*altgr-offset*
The offset of altgr keysyms. Often 2 or 4, but always an even number.

2.5 Remapped Keys

StumpWM may be configured to translate certain familiar top level keybindings to alterna-
tive key sequences that are understood by specific applications. For example, Emacs users
are very familiar with C-n and C-p as keybindings for scrolling down and up one line at
a time. However, most applications use these specific keybindings for other actions. The
stumpwm:define-remapped-keys function may be used to define such application specific
remapping of keybindings.

[Function]define-remapped-keys specs
Define the keys to be remapped and their mappings. The SPECS argument needs to
be of the following structure:

(regexp-or-function . (("key-to-remap" . <new-keycodes>) ...))

EXAMPLE: (define-remapped-keys ’(("Firefox" ("C-n" . "Down") ("C-p" . "Up")
("C-k" . ("C-S-End" "C-x")))))

The above form remaps Ctrl-n to Down arrow, and Ctrl-p to Up arrow keys. The
Ctrl-k key is remapped to the sequence of keys Ctrl-Shift-End followed by Ctrl-x.

(define-remapped-keys

'(("(Firefox|Chrome)"

("C-n" . "Down")

("C-p" . "Up")

("C-f" . "Right")

("C-b" . "Left")

("C-v" . "Next")

("M-v" . "Prior")

("M-w" . "C-c")

("C-w" . "C-x")

("C-y" . "C-v")

("M-<" . "Home")

("M->" . "End")

("C-M-b" . "M-Left")

("C-M-f" . "M-Right")

("M-f" . "C-Right")

("M-b" . "C-Left")

("C-k" . ("C-S-End" "C-x")))))
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The above form adds Emacs like keybindings to windows whose window-class matches
“Firefox” or “Chrome”. Additional application specific bindings may be included by using
the specific X window-class values.

The window matching pattern can also be specified as a function which returns T if the
focused window matches.

;; Match any window with a window-class matching "Firefox"

(define-remapped-keys

`((,(lambda (win)

(string-equal "Firefox" (window-class win)))

("C-n" . "Down")

("C-p" . "Up")

("C-f" . "Right")

("C-b" . "Left")

("C-v" . "Next")

("M-v" . "Prior")

("M-w" . "C-c")

("C-w" . "C-x")

("C-y" . "C-v")

("M-<" . "Home")

("M->" . "End")

("C-M-b" . "M-Left")

("C-M-f" . "M-Right")

("M-f" . "C-Right")

("M-b" . "C-Left")

("C-k" . ("C-S-End" "C-x")))))

2.5.1 Circumventing Remapped Keys

However, if the original key binding needs to be explictly applied the send-raw-key com-
mand may be used. It will prompt for a key which will be passed to the application as-is.
For example, if the send-raw-key command were bound to C-t C-q as follows:

(define-key *root-map* (kbd "C-q") "send-raw-key")

Then, pressing C-t C-q, while the Firefox window has focus, would prompt asking for
“Press a key to send”. Pressing C-n at the prompt will send the keystroke as-is to Firefox,
causing it to open a new window.

If more than a single key needs to be passed to the application as-is, the variable
*remapped-keys-enabled-p* may be used. Set to nil it will disable all remapped keys.

[Command]send-raw-key
Prompts for a key and forwards it to the CURRENT-WINDOW.

[Variable]*remapped-keys-enabled-p*
Bool to toggle remapped-keys on/off. Defaults to t
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3 Commands

If you’ve used Emacs before you’ll find the distinction between commands and functions
familiar. Commands are simply functions that can be bound to keys and executed in-
teractively from StumpWM’s input bar. Whereas, in Emacs, the special "(interactive)"
declaration is used to turn a function into a command, in StumpWM commands are made
with a separate defcommand or define-interactive-keymap macro.

Once a command is defined, you can call it by invoking the colon command (C-t ;),
and typing the name of the command. This may be sufficient for commands that aren’t
used very often. To see all the currently-defined commands, invoke the command called
commands: ie press C-t ;, type “commands”, and hit return.

Commonly-used commands can also be bound to a keystroke, which is much more con-
venient. To do this, use the define-key function (see Chapter 2 [Key Bindings], page 11),
giving the name of the command as a string. For example:

(define-key *root-map* (kbd "d") "exchange-direction")

You cannot give the command name as a symbol, nor can you bind a key to a regular
function defined with defun.

If the command takes arguments (see Section 3.1 [Writing Commands], page 21), you can
fix those arguments when defining the key-binding, by including the arguments in the same
string as the command name, separated by a space. For instance, the exchange-direction
command, which is unbound by default, requires a direction in which to exchange windows.
If you call exchange-direction directly, it will prompt you for the direction. If you know
that you often exchange in left/right directions, and want those actions bound to keys, you
can use the following in your customization file:

(define-key *root-map* (kbd "[") "exchange-direction left")

(define-key *root-map* (kbd "]") "exchange-direction right")

Multiple arguments can be included by adding them to the command string, separated
by spaces. Not all argument types can be represented as strings, but StumpWM will do its
best to convert types.

StumpWM does not implement the Emacs concept of prefix arguments.

3.1 Writing Commands

StumpWM commands are written much like any Lisp function. The main difference is in
the way command arguments are specified. The defcommandmacro takes a list of arguments
as its first form (similar to the defun macro), and a corresponding list of types as its second
form. All arguments must belong to a “type”. Each type specification has two parts: a
keyword specifying the argument type, and a string prompt that will be displayed when
asking the user to enter the argument value. A typical defcommand might look like this:

(defcommand now-we-are-six (name age)

((:string "Enter your name: ")

(:number "Enter your age: "))

(message "~a, in six years you will be ~a" name (+ 6 age)))

If now-we-are-six is called interactively via the colon command, the user will be
prompted for a string and a number, which will then be bound to “name” and “age”,
respectively, in the body of the command.
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When invoking the command via a key-binding, it is possible to provide some or all of
the arguments directly:

(define-key *root-map* (kbd "L") "now-we-are-six John")

In this case, hitting C-t L will only prompt for an age (the first string argument is
already bound to “John”). Argument values provided this way always bind to the earliest
arguments defined: ie, it is not possible to specify an age, but prompt the user for a name.

If the type declaration does not include a prompt (ie, it looks like “(:type nil)”, or
“(:type)” or just “:type”), the argument is considered optional. It can be provided via a
key-binding invocation, as above, but if it isn’t, the user will not be prompted, and the
argument will be bound to nil.

It is possible to limit the scope under which the command will be usable: a command
can be defined to work only a specific group type; the three currently implemented are tile
groups,f loating groups, and dynamic groups. This is done by replacing the name of the
command with a two-element list: the name of the command as a symbol, and either the
symbol tile-group or floating-group. For instance, the next command, which only functions
in tile groups, is defined this way:

(defcommand (next tile-group) ...)

[Macro]defcommand name( &rest args)( &rest interactive-args) &body body
Create a command function and store its interactive hints in *command-hash*. The
local variable %interactivep% can be used to check if the command was called in-
teractively. If it is non-NIL then it was called from a keybinding or from the colon
command.

The NAME argument can be a string, or a list of two symbols. If the latter, the first
symbol names the command, and the second indicates the type of group under which
this command will be usable. Currently, tile-group, floating-group and dynamic-group
are the possible values.

INTERACTIVE-ARGS is a list of the following form: ((TYPE PROMPT) (TYPE
PROMPT) ...)

each element in INTERACTIVE-ARGS declares the type and prompt for the com-
mand’s arguments.

TYPE can be one of the following:

:y-or-n A yes or no question returning T or NIL.

:variable A lisp variable

:function A lisp function

:command A stumpwm command as a string.

:key-seq A key sequence starting from *TOP-MAP*

:window-number
An existing window number

:number An integer number

:string A string
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:key A single key chord

:window-name
An existing window’s name

:direction A direction symbol. One of :UP :DOWN :LEFT :RIGHT

:gravity A gravity symbol. One of :center :top :right :bottom :left :top-right :top-
left :bottom-right :bottom-left

:group An existing group

:frame A frame

:shell A shell command

:rest The rest of the input yet to be parsed.

:module An existing stumpwm module

:rotation A rotation symbol. One of :CL, :CLOCKWISE, :CCL, OR :COUNTER-
CLOCKWISE

Note that new argument types can be created with DEFINE-STUMPWM-TYPE.

PROMPT can be string. In this case, if the corresponding argument is missing from an
interactive call, stumpwm will use prompt for its value using PROMPT. If PROMPT
is missing or nil, then the argument is considered an optional interactive argument
and is not prompted for when missing.

Alternatively, instead of specifying nil for PROMPT or leaving it out, an element can
just be the argument type.

[Macro]defcommand-alias alias original
Since interactive commands are functions and can conflict with package symbols. But
for backwards compatibility this macro creates an alias name for the command that
is only accessible interactively.

[Variable]*last-command*
Set to the last interactive command run.

3.2 Interactive Keymaps

Interactive keymaps are a special type of command that basically pushes another keymap
on top of the current one. The new keymap will only be removed after an exit command is
run. An example is iresize.

The macro define-interactive-keymap is used to define an interactive keymap. The
first argument is the same as defcommand. The second argument is a list of extra configu-
rations that can be used for controlling the command and the rest are the key bindings for
the new command, optionally with a t appended; this tells define-interactive-keymap
to exit the keymap upon use of that keybinding.

For instance, a simple interactive keymap:

(define-interactive-keymap my-new-command nil

((kbd "a") "execute-a-command")
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((kbd "b") "execute-b-command" t))

This creates a command called my-new-command that, when called, will activate the
interactive keymap mode. In this mode, the user can press “a” or “b” repeatedly, omitting
any prefix. The default exit commands are RET, C-g and ESC.

This creates a command called my-new-command that, when called, will activate the
interactive keymap mode. In this mode, the user can press “a” or “b”, omitting any prefix.
The user can press “a” repeatedly, however pressing “b” exits the keymap. The default exit
commands are RET, C-g and ESC.

The available configuration is on-enter, on-exit and abort-if:

(defun before-foo () (message "start foo"))

(defun after-foo () (message "end foo"))

(defun foo-p () (and *bar* *baz*))

(defparameter *custom-exit-keys* '((kbd "RET") (kbd "SPC")

(kbd "C-g") (kbd "ESC")))

(define-interactive-keymap foo (:on-enter #'before-foo

:on-exit #'after-foo

:abort-if #'foo-p

:exit-on *custom-exit-keys*))

In the above example, the message “start foo” will appear before starting the interactive
keymap, “end foo” will appear right after the command exits; We’ve added SPC as an exit
key with custom exit keys. Also, the command executes only if the variables *bar* and
*baz* are true.

[Macro]define-interactive-keymap name( &key on-enter on-exit abort-if
exit-on) &body key-bindings

Default Values:

on-enter nil

on-exit nil

abort-if nil

exit-on '((stumpwm:kbd "RET") (stumpwm:kbd "ESC")

(stumpwm:kbd "C-g"))

Declare an interactive keymap mode. This can be used for developing interactive
modes or command trees, such as iresize.

The NAME argument follows the same convention as in defcommand.

ON-ENTER and ON-EXIT are optional functions to run before and after the inter-
active keymap mode, respectively. If ABORT-IF is defined, the interactive keymap
will only be activated if calling ABORT-IF returns true.

KEY-BINDINGS is a list of the following form: ((KEY COMMAND) (KEY COM-
MAND) ...) If one appends t to the end of a binding like so: ((kbd "n") "cmd" t)
then the keymap is immediately exited after running the command.

Each element in KEY-BINDINGS declares a command inside the interactive keymap.
Be aware that these commands won’t require a prefix to run.
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[Command]call-and-exit-kmap command exit-command
This command effectively calls two other commands in succession, via run-commands.
it is designed for use in the define-interactive-keymap macro, to implement exiting
the keymap on keypress.

3.3 StumpWM Types

All command arguments must be of a defined “StumpWM type”. The following types are
pre-defined:

:y-or-n A yes or no question returning T or NIL.

:variable A lisp variable

:function A lisp function

:command A StumpWM command as a string.

:key-seq A key sequence starting from *TOP-MAP*

:window-number
An existing window number

:number An integer number

:string A string

:key A single key chord

:window-name
An existing window’s name

:direction A direction symbol. One of :UP :DOWN :LEFT :RIGHT

:gravity A gravity symbol. One of :center :top :right :bottom :left :top-right :top-left
:bottom-right :bottom-left

:group An existing group

:frame A frame

:shell A shell command

:rest The rest of the input yet to be parsed.

:module An existing StumpWM module

Additional types can be defined using the macro define-stumpwm-type. Emacs users
who are accustomed to writing more complicated interactive declarations using "(interactive
(list . . . ))" forms will find that similar logic can be put into StumpWM type definitions.
The macro is called like this:

(define-stumpwm-type :type-name (input prompt) body)

The keyword :type-name will then be available for use in defcommand macros. When
commands are called, the bodies of these type definitions are called in turn to produce
actual argument values.

Type definitions produce their value in one of several ways: by reading it from the
argument line bound to a keystroke, by prompting the user to enter a value, or by generating
it programmatically.
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Within the body of the type definition, the argument “input” is bound to the argument
line provided in the command string, and “prompt” to the string prompt provided in the
defcommand form. The usual convention is to first check if an argument has been provided
in “input” and, if it hasn’t, to prompt for it using “prompt”.

StumpWM provides several convenience functions for handling the value of “input”:

• argument-pop (input) pop the next space-delimited word or a double quote delimited
string argument from the argument line. Backslashes may be used to escape double
quotes or backslashes inside double quoted strings.

• argument-pop-rest (input) return the remainder of the argument line as a single
string, leaving input empty

• argument-pop-or-read (input prompt &optional completions) either pop an argument
from the argument line, or if it is empty use “prompt” to prompt the user for a value

• argument-pop-rest-or-read (input prompt &optional completions) either return the
remainder of the argument line as a string, leaving input empty, or use “prompt” to
prompt the user for a value

As an example, here’s a new type called :smart-direction. The existing :direction type
simply asks for one of the four directions “left”, “right”, “up” or “down”, without checking
to see if there’s a frame in that direction. Our new type, :smart-direction, will look around
the current frame, and only allow the user to choose a direction in which another frame
lies. If only one direction is possible it will return that automatically without troubling the
user. It signals an error for invalid directions; it could alternately return a “nil” value in
those cases, and let the command handle that.

(define-stumpwm-type :smart-direction (input prompt)

(let ((valid-dirs

(loop ; gather all the directions in which there's a neighbouring frame

with values = '(("up" :up)

("down" :down)

("left" :left)

("right" :right))

with frame-set =

(group-frames (window-group (current-window)))

for dir in values

for neighbour = (neighbour

(second dir)

(window-frame (current-window)) frame-set)

if (and neighbour (frame-window neighbour))

collect dir))

(arg (argument-pop input))) ; store a possible argument

(cond ((null valid-dirs) ; no directions, bail out

(throw 'error "No valid directions"))

(arg ; an arg was bound, but is it valid?

(or (second (assoc arg valid-dirs :test #'string=))

(throw 'error "Not a valid direction")))

((= 1 (length valid-dirs)) ; only one valid direction

(second (car valid-dirs)))
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(t ; multiple possibilities, prompt for direction

(second (assoc (completing-read input prompt valid-dirs

:require-match t)

valid-dirs :test #'string=))))))

(defcommand smarty (dir) ((:smart-direction "Pick a direction: "))

;; `dir' is a keyword here

(message "You're going ~a" (string-downcase dir)))

(define-key *root-map* (kbd "R") "smarty right")

[Macro]define-stumpwm-type type(input prompt) &body body
Create a new type that can be used for command arguments. type can be any symbol.

When body is evaluated input is bound to the argument-line. It is passed to
argument-pop, argument-pop-rest, etc. prompt is the prompt that should be used
when prompting the user for the argument.

(define-stumpwm-type :symbol (input prompt)

(or (find-symbol

(string-upcase

(or (argument-pop input)

;; Whitespace messes up find-symbol.

(string-trim " "

(completing-read (current-screen)

prompt

;; find all symbols in the

;; stumpwm package.

(let (acc)

(do-symbols (s (find-package "STUMPWM"))

(push (string-downcase (symbol-name s)) acc))

acc)))

(throw 'error "Abort.")))

"STUMPWM")

(throw 'error "Symbol not in STUMPWM package")))

(defcommand "symbol" (sym) ((:symbol "Pick a symbol: "))

(message "~a" (with-output-to-string (s)

(describe sym s))))

This code creates a new type called :symbol which finds the symbol in the stumpwm
package. The command symbol uses it and then describes the symbol.

3.4 Common Built-in Commands

[Command]emacs
Start emacs unless it is already running, in which case focus it.

[Command]version
Print version information and compilation date.
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[Command]banish &optional where
Default Values:

where nil

Warp the mouse the lower right corner of the current head.

[Command]ratwarp x y
Warp the mouse to the specified location.

[Command]ratrelwarp dx dy
Warp the mouse by the specified amount from its current position.

[Command]ratclick &optional button
Default Values:

button 1

Simulate a pointer button event at the current pointer location. Note: this function
is unlikely to work unless your X server and CLX implementation support XTEST.

[Command]restart-hard
Restart stumpwm. This is handy if a new stumpwm executable has been made and
you wish to replace the existing process with it.

Any run-time customizations will be lost after the restart.

[Command]restart-soft
Soft restart StumpWM. The lisp process isn’t restarted. Instead, control jumps to
the very beginning of the stumpwm program. This differs from RESTART, which
restarts the unix process.

Since the process isn’t restarted, existing customizations remain after the restart.

[Command]lastmsg
Display the last message. If the previous command was lastmsg, then continue cycling
back through the message history.

[Command]commands
List all available commands.

[Command]keyboard-quit
This way you can exit from command mode. Also aliased as abort.

[Command]quit
Quit StumpWM.

[Command]reload
Reload StumpWM using asdf.

[Command]echo-date
Display the date and time.

[Command]eval-line cmd
Evaluate the s-expression and display the result(s).
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[Command]command-mode
Command mode allows you to type StumpWM commands without needing the C-t

prefix. Keys not bound in StumpWM will still get sent to the current window. To
exit command mode, type C-g.

[Command]list-window-properties
List all the properties of the current window and their values, like xprop.

[Command]show-window-properties
Shows the properties of the current window. These properties can be used for match-
ing windows with run-or-raise or window placement rules.

[Command]time &rest args
nil
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4 Message and Input Bar

[Variable]*suppress-echo-timeout*
Assign this T and messages will not time out. It is recommended to assign this using
LET.

[Command]echo string
Display string in the message bar.

[Function]err fmt &rest args
run FMT and ARGS through format and echo the result to the current screen along
with a backtrace. For careful study, the message does not time out.

[Function]wrap words &optional max-col stream
Default Values:

max-col stumpwm:*message-max-width*

stream nil

Word wrap at the MAX-COL.

[Variable]*message-max-width*
The maximum width of a message before it wraps.

[Variable]*help-max-height*
Maximum number of lines for help to display.

[Variable]*which-key-format*
The format string that decides how keybindings will show up in the which-key window.
Two arguments will be passed to this formatter:

the keybind itself
the associated command

[Command]colon &optional initial-input
Default Values:

initial-input nil

Read a command from the user. initial-text is optional. When supplied, the text will
appear in the prompt.

String arguments with spaces may be passed to the command by delimiting them
with double quotes. A backslash can be used to escape double quotes or backslashes
inside the string. This does not apply to commands taking :REST or :SHELL type
arguments.

[Macro]with-restarts-menu &body body
Execute BODY. If an error occurs allow the user to pick a restart from a menu of
possible restarts. If a restart is not chosen, resignal the error.

[Function]restarts-menu err
Display a menu with the active restarts and let the user pick one. Error is the error
being recovered from. If the user aborts the menu, the error is re-signalled.
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4.1 Customizing The Bar

The bar’s appearance and behavior can be modified with the following functions and vari-
ables. See Chapter 15 [Colors], page 95, for an explanation of how to set these color
variables.

[Function]set-fg-color color
Set the foreground color for the message bar and input bar. color can be any color
recognized by X.

[Function]set-bg-color color
Set the background color for the message bar and input bar. color can be any color
recognized by X.

[Function]set-border-color color
Set the border color for the message bar and input bar. color can be any color
recognized by X.

[Function]set-msg-border-width width
Set the border width for the message bar, input bar and frame indicator.

[Function]set-font font
Set the font(s) for the message bar and input bar.

[Variable]*message-window-padding*
The number of pixels that pad the text in the message window.

[Variable]*message-window-y-padding*
The number of pixels that pad the text in the message window vertically.

[Variable]*message-window-gravity*
This variable controls where the message window appears. The following are valid
values.

:top-left

:top-right

:bottom-left
:bottom-right
:center

:top

:left

:right

:bottom

[Variable]*message-window-input-gravity*
This variable controls where the message window appears when the input window is
being displayed. The following are valid values.

:top-left
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:top-right

:bottom-left
:bottom-right
:center

:top

:left

:right

:bottom

[Variable]*message-window-timer*
Keep track of the timer that hides the message window.

[Variable]*timeout-wait*
Specifies, in seconds, how long a message will appear for. This must be an integer.

[Variable]*timeout-wait-multiline*
Specifies, in seconds, how long a message will more than one line will appear for. This
must be an integer. If falsy, default to *timeout-wait*.

[Variable]*input-window-gravity*
This variable controls where the input window appears. The following are valid values.

:top-left

:top-right

:bottom-left
:bottom-right
:center

:top

:left

:right

:bottom

4.2 Using The Input Bar

The following is a list of keybindings for the Input Bar. Users of Emacs will recognize them.

DEL Delete the character before point (delete-backward-char).

M-DEL Kill back to the beginning of the previous word (backward-kill-word).

C-d

Delete Delete the character after point (delete-forward-char).

M-d Kill forward to the end of the next word (forward-kill-word).

C-f

Right Move forward one character (forward-char).
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M-f Move forward one word (forward-word).

C-b

Left Move backward one character (backward-char).

M-b Move backward one word (backward-word).

C-a

Home Move to the beginning of the current line (move-beginning-of-line).

C-e

End Move to the end of the current line (move-end-of-line).

C-k Kill to the end of the line (kill-line).

C-u Kill to the beginning of the line (kill-to-beginning), the same as C-a C-k.

C-p

Up Move to the next earlier entry saved in the command history (history-back).

C-n

Down Move to the next later entry saved in the command history (history-forward).

RET Submit the entered command (submit).

C-g Abort the current action by closing the Input Bar (abort).

C-y Paste text from clipboard into the Input Bar (yank-selection).

TAB Clockwise tab complete the current string, if possible. Press TAB again to cycle
through completions.

S-TAB Counter-clockwise tab complete the current string, if possible. Press S-TAB

again to cycle through completions.

4.3 Programming The Message Bar

[Function]echo-string screen msg
Display string in the message bar on screen. You almost always want to use message.

[Function]message fmt &rest args
run FMT and ARGS through ‘format’ and echo the result to the current screen.

[Macro]with-message-queuing new-on-bottom-p &body body
Queue all messages sent by (MESSAGE ...), (ECHO-STRING ...), (ECHO-STRING-
LIST ...) forms within BODY without clobbering earlier messages. When NEW-ON-
BOTTOM-P is non-nil, new messages are queued at the bottom.

[Variable]*queue-messages-p*
When non-nil, ECHO-STRING-LIST will retain old messages in addition to new ones.
When the value is :new-on-bottom, new messages are added to the bottom as in a
log file. See also WITH-MESSAGE-QUEUING.

[Variable]*input-history-ignore-duplicates*
Do not add a command to the input history if it’s already the first in the list.
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[Variable]*input-completion-style*
The completion style to use. A completion style has to implement input-completion-
reset and input-completion-complete. Available completion styles include

make-input-completion-style-cyclic
make-input-completion-style-unambiguous

[Function]make-input-completion-style-cyclic
nil

[Function]make-input-completion-style-unambiguous &key display-limit
Default Values:

display-limit 64

nil

[Command]copy-last-message
Copy the last message displayed into the X selection

4.4 Programming the Input Bar

New input behavior can be added to the input bar by creating editing functions and binding
them to keys in the *input-map* using define-key, just like other key bindings.

An input function takes 2 arguments: the input structure and the key pressed.

[Function]read-one-line screen prompt &key completions initial-input
require-match password

Default Values:

completions nil

initial-input ""

require-match nil

password nil

Read a line of input through stumpwm and return it. Returns nil if the user aborted.

[Function]read-one-char screen
Read a single character from the user.

[Function]completing-read screen prompt completions &key initial-input
require-match

Default Values:

initial-input ""

require-match nil

Read a line of input through stumpwm and return it with TAB completion. Com-
pletions can be a list, an fbound symbol, or a function. If its an fbound symbol or
a function then that function is passed the substring to complete on and is expected
to return a list of matches. If require-match argument is non-nil then the input must
match with an element of the completions.

[Function]input-insert-string input string
Insert string into the input at the current position. input must be of type input-line.
Input functions are passed this structure as their first argument.
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[Function]input-insert-char input char
Insert char into the input at the current position. input must be of type input-line.
Input functions are passed this structure as their first argument.

[Variable]*input-map*
This is the keymap containing all input editing key bindings.
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5 Windows

[Command]next
Go to the next window in the window list.

[Command]prev
Go to the previous window in the window list.

[Command]delete-window &optional window
Default Values:

window (stumpwm:current-window)

Delete a window. By default delete the current window. This is a request sent to the
window. The window’s client may decide not to grant the request or may not be able
to if it is unresponsive.

[Command]kill-window &optional window
Default Values:

window (stumpwm:current-window)

Tell X to disconnect the client that owns the specified window. Default to the current
window. if delete-window didn’t work, try this.

[Command]kill-windows-current-group
Kill all windows in the current group.

[Command]kill-windows-other
Kill all windows in current group except the current-window

[Command]echo-windows &optional fmt group windows
Default Values:

fmt stumpwm:*window-format*

group (stumpwm:current-group)

windows (stumpwm:group-windows stumpwm:group)

Display a list of managed windows. The optional argument fmt can be used to override
the default window formatting.

[Command]other-window &optional group
Default Values:

group (stumpwm:current-group)

Switch to the window last focused.

[Command]pull-hidden-next
Pull the next hidden window into the current frame.

[Command]pull-hidden-previous
Pull the next hidden window into the current frame.

[Command]pull-hidden-other
Pull the last focused, hidden window into the current frame.
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[Command]pull-from-windowlist &optional fmt
Default Values:

fmt stumpwm:*window-format*

Pulls a window selected from the list of windows. This allows a behavior similar to
Emacs’ switch-to-buffer when selecting another window.

[Command]renumber nt &optional group
Default Values:

group (stumpwm:current-group)

Change the current window’s number to the specified number. If another window is
using the number, then the windows swap numbers. Defaults to current group.

[Command]meta key
Send a fake key to the current window. key is a typical StumpWM key, like C-M-o.

[Command]select-window query
Switch to the first window that starts with query.

[Command]select-window-by-number num &optional group
Default Values:

group (stumpwm:current-group)

Find the window with the given number and focus it in its frame.

[Command]select-window-by-name name
Switch to the first window whose name is exactly name.

[Command]repack-window-numbers &optional preserved
Default Values:

preserved nil

Ensure that used window numbers do not have gaps; ignore PRESERVED window
numbers.

[Command]title title
Override the current window’s title.

[Command]windowlist &optional fmt window-list
Default Values:

fmt stumpwm:*window-format*

window-list nil

Allow the user to select a window from the list of windows and focus the selected
window. For information of menu bindings see Section 14.1 [Menus], page 88. The
optional argument fmt can be specified to override the default window formatting.
The optional argument window-list can be provided to show a custom window list
(see windowlist-by-class). The default window list is the list of all window in the
current group. Also note that the default window list is sorted by number and if the
windows-list is provided, it is shown unsorted (as-is).
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[Command]windowlist-by-class &optional fmt
Default Values:

fmt stumpwm::*window-format-by-class*

Allow the user to select a window from the list of windows (sorted by class) and focus
the selected window. For information of menu bindings see Section 14.1 [Menus],
page 88. The optional argument fmt can be specified to override the default window
formatting. This is a simple wrapper around the command windowlist.

[Command]fullscreen
Toggle the fullscreen mode of the current widnow. Use this for clients with broken
(non-NETWM) fullscreen implementations, such as any program using SDL.

[Command]info &optional fmt
Default Values:

fmt stumpwm::*window-info-format*

Display information about the current window.

[Command]refresh
Refresh current window without changing its size.

[Command]redisplay
Refresh current window by a pair of resizes, also make it occupy entire frame.

[Command]float-this
Transforms a tile-window into a float-window

[Command]unfloat-this
Transforms a float-window into a tile-window

[Command]flatten-floats
Transform all floating windows in this group to tiled windows. Puts all tiled windows
in the first frame of the group.

[Command]unmaximize &optional window
Default Values:

window (stumpwm:current-window)

Use the size the program requested for current window (if any) instead of maximizing
it.

[Command]toggle-always-on-top
Toggle whether the current window always appears over other windows. The order
windows are added to this list determines priority.

[Command]toggle-always-show
Toggle whether the current window is shown in all groups.

[Command]window-send-string string &optional window
Default Values:

window (stumpwm:current-window)

Send the string of characters to the current window as if they’d been typed.
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[Function]window-head window
Report what window the head is currently on.

[Function]window-sync window what-changed
Some window slot has been updated and the window may need to sync itself. WHAT-
CHANGED is a hint at what changed.

[Function]window-visible-p window
Return T if the window is visible

[Function]raise-window window
Bring the window to the top of the window stack.

[Function]focus-window window &optional raise
Default Values:

raise nil

Give the specified window keyboard focus and (optionally) raise.

[Variable]*xwin-to-window*
Hash table for looking up windows quickly.

[Variable]*window-format*
This variable decides how the window list is formatted. It is a string with the following
formatting options:

%n Substitutes the window’s number translated via *window-number-map*,
if there are more windows than *window-number-map* then will use the
window-number.

%s Substitute the window’s status. * means current window, + means last
window, and - means any other window.

%t Substitute the window’s name.

%c Substitute the window’s class.

%i Substitute the window’s resource ID.

%m Draw a # if the window is marked.

Note, a prefix number can be used to crop the argument to a specified size. For
instance, ‘%20t’ crops the window’s title to 20 characters.

[Variable]*window-info-format*
The format used in the info command. See *window-format* for formatting details.

[Variable]*window-name-source*
This variable controls what is used for the window’s name. The default is :title.

:title Use the window’s title given to it by its owner.

:class Use the window’s resource class.

:resource-name

Use the window’s resource name.
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[Variable]*new-window-preferred-frame*
This variable controls what frame a new window appears in. It is a list of preferences.
The first preference that is satisfied is used. Valid list elements are as follows:

:focused Choose the focused frame.

:last Choose the last focused frame.

:empty Choose any empty frame.

:unfocused

Choose any unfocused frame.

Alternatively, it can be set to a function that takes one argument, the new window,
and returns the preferred frame or a list of the above preferences.

[Variable]*hidden-window-color*
Color command for hidden windows when using the fmt-head-window-list-hidden-
windows formatter. To disable coloring hidden windows, set this to an empty string.

[Variable]*honor-window-moves*
Allow windows to move between frames.

[Macro]define-fullscreen-in-frame-rule name(window-argument) &body
body

Define a rule for a window to be fullscreened within the frame. Each rule is a function
which will be called when a window is made fullscreen. If the rule returns NIL then
the fullscreen window takes up the entire head, otherwise it takes up only its frame.
Within the body of the rule WINDOW-ARGUMENT is bound to the window being
processed.

[Function]add-fullscreen-in-frame-rule name function &key shadow
Default Values:

shadow nil

Add a function to the fullscreen-in-frame window rules alist. If NAME already exists
as a key in the alist and SHADOW is nil, then FUNCTION replaces the existing
value. Otherwise NAME and FUNCTION are pushed onto the alist.

[Function]remove-fullscreen-in-frame-rule name &key count
Default Values:

count nil

Remove rules named NAME from the fullscreen-in-frame window rules alist. If
COUNT is NIL then all matching rules are removed, otherwise only the first COUNT
rules are removed.

[Variable]*fullscreen-in-frame-p-window-functions*
A alist of predicate functions for determining if a window should be fullscreen in
frame.
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5.1 Window Marks

Windows can be marked. A marked window has a # beside it in the window list. Some
commands operate only on marked windows.

[Command]mark
Toggle the current window’s mark.

[Command]clear-window-marks &optional group windows
Default Values:

group (stumpwm:current-group)

windows (stumpwm:group-windows stumpwm:group)

Clear all marks in the current group.

[Command]pull-marked
Pull all marked windows into the current frame and clear the marks.

5.2 Customizing Window Appearance

[Variable]*maxsize-border-width*
The width in pixels given to the borders of windows with maxsize or ratio hints.

[Variable]*transient-border-width*
The width in pixels given to the borders of transient or pop-up windows.

[Variable]*normal-border-width*
The width in pixels given to the borders of regular windows.

[Variable]*window-border-style*
This controls the appearance of the border around windows. valid values are:

:thick All space within the frame not used by the window is dedicated to the
border.

:thin Only the border width as controlled by *maxsize-border-width* *normal-
border-width* and *transient-border-width* is used as the border. The
rest is filled with the unfocus color.

:tight The same as :thin but the border surrounds the window and the wasted
space within the frame is not obscured, revealing the background.

:none Like :tight but no border is ever visible.

After changing this variable you may need to call sync-all-frame-windows to see the
change.

See Chapter 15 [Colors], page 95, for an explanation of how to set these color variables.

[Function]set-win-bg-color color
Set the background color of the window. The background color will only be visible
for windows with size increment hints such as ‘emacs’ and ‘xterm’.
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[Function]set-focus-color color
Set the border color for focused windows. This is only used when there is more than
one frame.

[Function]set-unfocus-color color
Set the border color for windows without focus. This is only used when there is more
than one frame.

[Function]set-float-focus-color color
Set the border color for focused windows in a float group.

[Function]set-float-unfocus-color color
Set the border color for windows without focus in a float group.

[Function]set-normal-gravity gravity
Set the default gravity for normal windows. Possible values are :center :top :left

:right :bottom :top-left :top-right :bottom-left and :bottom-right.

[Function]set-maxsize-gravity gravity
Set the default gravity for maxsize windows.

[Function]set-transient-gravity gravity
Set the default gravity for transient/pop-up windows.

[Command]gravity gravity
Set a window’s gravity within its frame. Gravity controls where the window will
appear in a frame if it is smaller that the frame. Possible values are:

center

top

right

bottom

left

top-right

top-left

bottom-right
bottom-left

[Function]gravity-coords gravity width height minx miny maxx maxy
Get the X and Y coordinates to place something of width WIDTH and height
HEIGHT within an area defined by MINX MINY MAXX and MAXY, guided by
GRAVITY.
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5.3 Controlling Raise And Map Requests

It is sometimes handy to deny a window’s request to be focused. The following variables
determine such behavior.

A map request occurs when a new or withdrawn window requests to be mapped for the
first time.

A raise request occurs when a client asks the window manager to give an existing window
focus.

[Variable]*deny-map-request*
A list of window properties that stumpwm should deny matching windows’ requests
to become mapped for the first time.

[Variable]*deny-raise-request*
Exactly the same as *deny-map-request* but for raise requests.

Note that no denial message is displayed if the window is already visible.

[Variable]*suppress-deny-messages*
For complete focus on the task at hand, set this to T and no raise/map denial messages
will be seen.

Some examples follow.

;; Deny the firefox window from taking focus when clicked upon.

(push '(:class "gecko") stumpwm:*deny-raise-request*)

;; Deny all map requests

(setf stumpwm:*deny-map-request* t)

;; Deny transient raise requests

(push '(:transient) stumpwm:*deny-map-request*)

;; Deny the all windows in the xterm class from taking focus.

(push '(:class "Xterm") stumpwm:*deny-raise-request*)

5.4 Programming With Windows

[Macro]define-window-slot attr
Create a new window attribute and corresponding get/set functions.

[Function]window-send-string string &optional window
Default Values:

window (stumpwm:current-window)

Send the string of characters to the current window as if they’d been typed.

[Variable]*default-window-name*
The name given to a window that does not supply its own name.

[Variable]*window-events*
The events to listen for on managed windows.
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[Variable]*window-parent-events*
The events to listen for on managed windows’ parents.

5.5 Rule Based Window Placement

[Macro]define-frame-preference target-group &body frame-rules
Create a rule that matches windows and automatically places them in a specified
group and frame. Each frame rule is a lambda list:

(frame-number raise lock &key from-group create restore dump-name class class-not

instance instance-not type type-not role role-not title title-not

match-properties-and-function match-properties-or-function)

target-group
When nil, rule applies in the current group. When non nil, lock deter-
mines applicability of rule

frame-number
The frame number to send matching windows to

raise When non-nil, raise and focus the window in its frame

lock When this is nil, this rule will only match when target-group matches
the group designated by from-group. When non-nil, this rule matches
regardless of the group and the window is sent to target-group. If lock
and raise are both non-nil, then stumpwm will jump to the specified
group and focus the matched window.

from-group
When lock is NIL, and this is non-NIL, this rule will only match
when target-group matches from-group. This should be set to either
a group name(a string), or an expression that returns a group(e.g
(current-group)). When this is NIL, the rule matches if target-group
matches the group the window is in, or the current group if the window
has no group.

create When non-NIL the group is created and eventually restored when the
value of create is a group dump filename in *DATA-DIR*. Defaults to
NIL.

restore When non-NIL the group is restored even if it already exists. This arg
should be set to the dump filename to use for forced restore. Defaults to
NIL

class The windows class must match class.

class-not The windows class must not match class-not

instance The windows instance/resource name must match instance.

instance-not
The windows instance/resource name must not match instance-not.

type The windows type must match type.
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type-not The windows type must not match type-not.

role The windows role must match role.

role-not The windows role must not match role-not.

title The windows title must match title.

title-not The windows title must not match title-not.

match-properties-and-function
A function that, if provided, must return true alongside the provided
properties in order for the rule to match. This function takes one ar-
gument, the window. Must be an unquoted symbol to be looked up at
runtime.

match-properties-or-function
A function that, if provided and returning true, will cause the rule to
match regardless of whether the window properties match. Takes one
argument, the window. Must be an unquoted symbol to be looked up at
runtime.

[Function]clear-window-placement-rules
Clear all window placement rules.

[Command]remember lock title
Make a generic placement rule for the current window. Might be too specific/not
specific enough!

[Command]forget
Forget the window placement rule that matches the current window.

[Command]dump-window-placement-rules file
Dump *window-placement-rules* to FILE.

[Command]restore-window-placement-rules file
Restore *window-placement-rules* from FILE.

[Variable]*window-placement-rules*
List of rules governing window placement. Use define-frame-preference to add rules

5.6 Window Selection Expressions

Window Selection Expressions (WSE) were inspired by SQL. The intent is to allow writing
consise code to select the windows you need and to act upon them (or just to get the list of
selected windows). The implementation includes a set of (hopefully) consistent concisely-
named wrappers for the StumpWM functionality useful for window set description and the
act-on-matching-windows macro that encapsulates the logic of iterating over a window set.

If we had SQL in StumpWM, we would write select window_id from windows as w

where w.title = 'XTerm'. WSE chooses to be more Lisp-style and instead uses (act-on-
matching-windows (w) (titled-p w "XTerm") w)

The act-on-matching-windows function also allows performing some actions, for ex-
ample getting all the windows titled XTerm into the current group: (act-on-matching-

windows (w) (titled-p w "XTerm") (pull-w w))
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[Function]move-windows-to-group windows &optional arggroup
Default Values:

arggroup nil

Move all windows from the list to the group

[Macro]act-on-matching-windows (var &optional range) condition &rest code
Default Values:

range '(stumpwm:current-screen)

Run code on all windows matching condition; var is the shared lambda variable.
Range can be any screen/group/frame or :screen/:group/:frame for the current in-
stance. Condition is just the code to evaluate.

[Function]pull-w w &optional g
Default Values:

g nil

Pull the window w: to the current group or to the specified group g.

[Function]titled-p w title
Check whether window title of the window w is equal to the string title.

[Function]title-re-p w tre
Check whether the window title of the window w matches the regular expression tre.

[Function]classed-p w class
Check whether the window class of the window w is equal to the string class.

[Function]class-re-p w cre
Check whether the window class of the window w matches the regular expression cre.

[Function]typed-p w type
Check whether the window type of the window w is equal to the string type.

[Function]type-re-p w tre
Check whether the window type of the window w matches the regular expression tre.

[Function]roled-p w role
Check whether the window role of the window w is equal to the string role.

[Function]role-re-p w rre
Check whether the window role of the window w matches the regular expression rre.

[Function]resed-p w res
Check whether the window resource of the window w is equal to the string res.

[Function]res-re-p w rre
Check whether the window resource of the window w matches the regular expression
rre.
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[Function]grouped-p w &optional name
Default Values:

name nil

Check whether the window w belongs to the group name or the current group if name
is not specified.

[Function]in-frame-p w &optional f
Default Values:

f nil

Check whether the window w belongs to the frame f or to the current frame if the
frame is not specified.
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6 Frames

Frames contain windows. All windows exist within a frame.

Those used to ratpoison will notice that this differs from ratpoison’s window pool, where
windows and frames are not so tightly connected.

[Command]pull-window-by-number n &optional group
Default Values:

group (stumpwm:current-group)

Pull window N from another frame into the current frame and focus it.

[Command]hsplit &optional ratio
Default Values:

ratio "1/2"

Split the current frame into 2 side-by-side frames.

[Command]vsplit &optional ratio
Default Values:

ratio "1/2"

Split the current frame into 2 frames, one on top of the other.

[Command]hsplit-equally amt
Deprecated. Use ‘vsplit-uniformly’ instead.

[Command]vsplit-uniformly amt
Split current frame in n rows of equal size.

[Command]vsplit-equally amt
Deprecated. Use ‘hsplit-uniformly’ instead.

[Command]hsplit-uniformly amt
Split current frame in n columns of equal size.

[Command]remove-split &optional group frame
Default Values:

group (stumpwm:current-group)

frame (stumpwm::tile-group-current-frame stumpwm:group)

Remove the specified frame in the specified group (defaults to current group, current
frame). Windows in the frame are migrated to the frame taking up its space.

[Command]only
Delete all the frames but the current one and grow it to take up the entire head.

[Command]curframe
Display a window indicating which frame is focused.

[Command]fnext
Cycle through the frame tree to the next frame.
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[Command]fprev
Cycle through the frame tree to the previous frame.

[Command]sibling
Jump to the frame’s sibling. If a frame is split into two frames, these two frames are
siblings.

[Command]fother
Jump to the last frame that had focus.

[Command]fselect frame-number
Display a number in the corner of each frame and let the user to select a frame by
number or click. If frame-number is specified, just jump to that frame.

[Command]resize width height
Move the frame split directly to the right of the current frame as much as possible up
to width pixels, or if impossible try the split directly to the left instead. Similarly,
also move the frame split directly below the current frame as much as possible up to
height pixels, or if impossible try the split directly above instead.

[Command]resize-direction d
Resize frame to direction d

[Command]balance-frames &aux
Make frames the same height or width in the current frame’s subtree.

[Command]fclear
Clear the current frame.

[Command]move-focus dir
Focus the frame adjacent to the current one in the specified direction. The following
are valid directions:

up

down

left

right

[Command]move-window dir
Just like move-focus except that the current is pulled along.

[Command]next-in-frame
Go to the next window in the current frame.

[Command]prev-in-frame
Go to the previous window in the current frame.

[Command]other-in-frame
Go to the last accessed window in the current frame.
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[Command]next-urgent
Jump to the next urgent window

[Command]frame-windowlist &optional fmt
Default Values:

fmt stumpwm:*window-format*

Allow the user to select a window from the list of windows in the current frame and
focus the selected window. The optional argument fmt can be specified to override
the default window formatting.

[Command]echo-frame-windows &optional fmt
Default Values:

fmt stumpwm:*window-format*

Display a list of all the windows in the current frame.

[Command]exchange-direction dir &optional win
Default Values:

win (stumpwm:current-window)

Exchange the current window (by default) with the top window of the frame in
specified direction. (bound to C-t x by default)

up

down

left

right

[Command]expose
Automagically lay out all windows in a grid and let the user select one, making that
window the focused window. Set the variable ‘*expose-auto-tile-fn*’ to another tiling
function if a different layout is desired for tile groups. Set ‘*expose-n-max*’ to the
maximum number of windows to be displayed for choosing when in a tile group.

[Macro]save-frame-excursion &body body
Execute body and then restore the current frame.

[Function]run-or-pull cmd props &optional all-groups all-screens
Default Values:

all-groups stumpwm:*run-or-raise-all-groups*

all-screens stumpwm:*run-or-raise-all-screens*

Similar to run-or-raise, but move the matching window to the current frame instead
of switching to the window.

[Function]only-one-frame-p
T if there is only one maximized frame in the current head. This can be used around
a the "only" command to avoid the warning message.
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[Variable]*min-frame-width*
The minimum width a frame can be. A frame will not shrink below this width.
Splitting will not affect frames if the new frame widths are less than this value.

[Variable]*min-frame-height*
The minimum height a frame can be. A frame will not shrink below this height.
Splitting will not affect frames if the new frame heights are less than this value.

[Variable]*new-frame-action*
When a new frame is created, this variable controls what is put in the new frame.
Valid values are

:empty The frame is left empty

:last-window

The last focused window that is not currently visible is placed in the
frame. This is the default.

[Variable]*expose-auto-tile-fn*
Function to call to tile current windows.

[Variable]*expose-n-max*
Maximum number of windows to display in the expose

[Variable]*frame-indicator-text*
What appears in the frame indicator window?

[Variable]*frame-indicator-timer*
Keep track of the timer that hides the frame indicator.

[Variable]*frame-number-map*
Set this to a string to remap the frame numbers to more convenient keys. For instance,

"hutenosa"

would map frame 0 to 7 to be selectable by hitting the appropriate homerow key on
a dvorak keyboard. Currently, only single char keys are supported. By default, the
frame labels are the 36 (lower-case) alphanumeric characters, starting with numbers
0-9.

6.1 Interactively Resizing Frames

There is a mode called iresize that lets you interactively resize the current frame. To
enter the mode use the iresize command or type C-t r.

The following keybindings apply to the mode:

C-p

Up

k Shrink the frame vertically.

C-n

Down

j Expand the frame vertically.
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C-f

Right

l Expand the frame horizontally.

C-b

Left

h Shrink the frame horizontally.

C-g

ESC Abort the interactive resize.

RET Select the highlighted option.

[Command]iresize
Starts interactive command "IRESIZE"

[Function]setup-iresize
Start the interactive resize mode.

[Variable]*resize-map*
The keymap used for resizing a window

[Variable]*resize-increment*
Number of pixels to increment by when interactively resizing frames.

6.2 Frame Dumping

The configuration of frames and groups can be saved and restored using the following
commands.

[Command]dump-desktop-to-file file
Dumps the frames of all groups of all screens to the named file. If FILE is an absolute
path, then the dump will be read written there. Otherwise, defaults to writing to
"FILE.dump" in the XDG DATA HOME location.

[Command]dump-group-to-file file
Dumps the frames of the current group of the current screen to the named file. If
FILE is an absolute path, then the dump will be read written there. Otherwise,
defaults to writing to "FILE.dump" in the XDG DATA HOME location.

[Command]dump-screen-to-file file
Dumps the frames of all groups of the current screen to the named file. If FILE is
an absolute path, then the dump will be read written there. Otherwise, defaults to
writing to "FILE.dump" in the XDG DATA HOME location.

[Command]restore-from-file file
Restores screen, groups, or frames from named file, depending on file’s contents. If
FILE is an absolute path, then the dump will be read from there. Otherwise, defaults
to reading from "FILE.dump" in the XDG DATA HOME location.

[Command]place-existing-windows
Re-arrange existing windows according to placement rules.
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[Command]place-current-window
Re-arrange current window according to placement rules.

The configuration files are stored in the $XDG CONFIG HOME/stumpwm. The file
name specified is saved as a .dump file type. For example, : dump-desktop-to-file

example may save a file in ~/.local/share/stumpwm/example.dump. restore-from-file
also adds the .dump extension by default.
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7 The Mode Line

The mode line is a bar that runs across either the top or bottom of a head and is used to
display information. By default the mode line displays the list of windows, similar to the
output C-t w produces.

Alternatively, external panel applications such as the GNOME panel and KDE’s kicker
may be used. Simply starting one of these programs is enough to set it as the mode line
of the head it would like to be on (if the panel is XRandR aware) or whichever head is
available. In order to avoid problems displaying menus, configure your panel application for
positioning at the top or bottom of the head rather than relying on *mode-line-position*

The mode line can be turned on and off with the mode-line command or the lisp function
stumpwm:toggle-mode-line. Each head has its own mode line. For example:

;; turn on/off the mode line for the current head only.

(stumpwm:toggle-mode-line (stumpwm:current-screen)

(stumpwm:current-head))

The mode line is updated after every StumpWM command.

To display the window list and the current date on the modeline, one might do the
following:

(setf stumpwm:*screen-mode-line-format*

(list "%w | "

'(:eval (stumpwm:run-shell-command "date" t))))

(stumpwm:run-shell-command "date" t) runs the command date and returns its out-
put as a string.

[Command]mode-line
A command to toggle the mode line visibility.

[Function]toggle-mode-line screen head &optional format
Default Values:

format 'stumpwm:*screen-mode-line-format*

Toggle the state of the mode line for the specified screen

[Variable]*screen-mode-line-format*
This variable describes what will be displayed on the modeline for each screen. Turn
it on with the function TOGGLE-MODE-LINE or the mode-line command.

It is a list where each element may be a string, a symbol, or a list.

For a symbol its value is used.

For a list of the form (:eval FORM) FORM is evaluated and the result is used as a
mode line element.

If it is a string the string is printed with the following formatting options:

%h List the number of the head the mode-line belongs to

%w List all windows in the current group windows using *window-format*

%W List all windows on the current head of the current group using *window-
format*
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%g List the groups using *group-format*

%n The current group’s name

%u Using *window-format*, return a 1 line list of the urgent windows, space
seperated.

%v Using *window-format*, return a 1 line list of the windows, space sepa-
rated. The currently focused window is highlighted with fmt-highlight.
Any non-visible windows are colored the *hidden-window-color*.

%d Using *time-modeline-string*, print the time.

A number of modules have been written that extends the possible formatting strings.
See their documentation for details.

[Variable]*time-format-string-default*
The default value for ‘echo-date’, (e.g, Thu Mar 3 2005 23:05:25).

[Variable]*time-modeline-string*
The default time value to pass to the modeline.

[Hook]*new-mode-line-hook*
Called whenever the mode-line is created. It is called with argument, the mode-line

[Variable]*screen-mode-line-formatters*
An alist containing format character format function pairs for formatting screen mode-
lines. functions are passed the mode line.

[Variable]*window-formatters*
an alist containing format character format function pairs for formatting window lists.

[Function]bar percent width full empty
Return a progress bar string of WIDTH characters composed of characters FULL and
EMPTY at PERCENT complete.

[Function]bar-zone-color amount &optional med hi crit reverse
Default Values:

med 20

hi 50

crit 90

reverse nil

Return a color command based on the magnitude of the argument. If the limits for
the levels aren’t specified, they default to sensible values for a percentage. With
reverse, lower numbers are more critical.

[Function]add-screen-mode-line-formatter character fmt-fun
Add a format function to a format character (or overwrite an existing one).

[Function]enable-mode-line screen head state &optional format
Default Values:

format nil

Set the state of SCREEN’s HEAD’s mode-line. If STATE is T and FORMAT is
specified, then the mode-line’s format is updated.
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The following variables control the color, position, and size of the mode line. See Chap-
ter 15 [Colors], page 95, for an explanation of how to set these color variables.

[Variable]*mode-line-position*
Specifies where the mode line is displayed. Valid values are :top and :bottom.

[Variable]*mode-line-border-width*
Specifies how thick the mode line’s border will be. Integer value.

[Variable]*mode-line-highlight-template*
The string passed to FORMAT to highlight things in the mode line.

[Variable]*mode-line-pad-x*
Specifies the number of padding pixels between the text and the side of the mode
line. Integer value.

[Variable]*mode-line-pad-y*
The number of padding pixels between the modeline text and the top/bottom of the
modeline. Integer value.

[Variable]*mode-line-background-color*
The mode line background color.

[Variable]*mode-line-foreground-color*
The mode line foreground color.

[Variable]*mode-line-border-color*
The mode line border color.

[Variable]*mode-line-timeout*
The modeline updates after each command, when a new window appears or an existing
one disappears, and on a timer. This variable controls how many seconds elapse
between each update. If this variable is changed while the modeline is visible, you
must toggle the modeline to update timer.

7.1 Mode-line Interaction

Mode line formatters can register sections of text to be clickable by use of the color format-
ters :on-click and :on-click-end. Any text enclosed by these formatters has its bounds
saved, and when the mode line recieves a button press event these bounds are checked
against to find a clickable area, whose registered function is then called. These formatters
can be thought of as similar to XML tags.

To disable the on-click behavior, remove the function check-for-ml-press from the
hook *mode-line-click-hook*.

To call a function by click the function must first be registered. The function must take
at least one argument, the button code. Here is an example of a click-to-focus function and
its registration:

(defun ml-on-click-focus-window (code id &rest rest)

(declare (ignore code rest))
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(when-let ((window (window-by-id id)))

(focus-all window)))

(register-ml-on-click-id :ml-on-click-focus-window #'ml-on-click-focus-window)

This defines a function that focuses a window based upon its X11 window ID, and
registers it under the ID :ml-on-click-focus-window. Here is an example of a mode line
formatter that makes use of this function:

(add-screen-mode-line-formatter #\i 'fmt-head-window-list-clickable)

(defun fmt-head-window-list-clickable (ml)

"Using *window-format*, return a 1 line list of the windows,

space seperated and clickable."

(flet ((fmt-w (w)

(let ((str (format-expand *window-formatters*

*window-format*

w)))

(format-with-on-click-id (if (eq w (current-window))

(fmt-highlight str)

str)

:ml-on-click-focus-window

(window-id w)))))

(format nil "~{~a~^ ~}"

(mapcar #'fmt-w

(sort1 (head-windows (mode-line-current-group ml)

(mode-line-head ml))

#'< :key #'window-number)))))

In the above formatter, every windows expansion is wrapped in a :on-click/end pair,
which takes the ID we registered as the function to call and the window ID as an argument
to be passed to its function. The arguments provided to :on-click will be read but not
evaluated. The string generated will look like so:

"^(:on-click :ml-on-click-focus-window 308242)window text^(:on-click-end)"

Clickable text can be nested, in which case the innermost clickable text will take precen-
dent. In the following example :id2 will be dispatched when clicking 2, but :id1 will be
dispatched when clicking 1 and 3:

"^(:on-click :id1)1^(:on-click :id2)2^(:on-click-end)3^(:on-click-end)"

If one wished for right click to delete windows, then the following example could be
placed in the .stumpwmrc:

(labels ((ml-on-click-focus-or-delete-window (code id &rest rest)

(declare (ignore rest))

(when-let ((window (window-by-id id)))

(let ((button (decode-button-code code)))

(case button

((:left-button)

(focus-all window))

((:right-button)

(delete-window window)))))))
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(register-ml-on-click-id :ml-on-click-focus-window

#'ml-on-click-focus-or-delete-window))

This will replace the :ml-on-click-focus-window function, and all uses of :on-click
formatters referring to :ml-on-click-focus-window will use the new function.

[Function]register-ml-on-click-id id fn
Register FN with ID, to be used by the :on-click mode line color formatter.

[Function]format-with-on-click-id string id &rest arguments
Wrap STRING in :on-click and :on-click-end color formatters, using ID as the id to
call when clicked and ARGUMENTS as the arguments to pass to the ID’s function.
STRING may not contain the :> color formatter, but may contain any other color
formatters.
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8 Groups

Groups in StumpWM are more commonly known as virtual desktops or workspaces. Why
not create a new term for it?

[Command]gnew name
Create a new group with the specified name. The new group becomes the current
group. If name begins with a dot (“.”) the group new group will be created in the
hidden state. Hidden groups have group numbers less than one and are invisible to
from gprev, gnext, and, optionally, groups and vgroups commands.

[Command]gnew-float name
Create a floating window group with the specified name and switch to it.

[Command]gnew-dynamic name
Create a new dynamic group named NAME.

[Command]gnewbg name
Create a new group but do not switch to it.

[Command]gnewbg-float name
Create a floating window group with the specified name, but do not switch to it.

[Command]gnewbg-dynamic name
Create a new dynamic group named NAME in the background.

[Command]gnext
Cycle to the next group in the group list.

[Command]gprev
Cycle to the previous group in the group list.

[Command]gnext-with-window
Cycle to the next group in the group list, taking the current window along.

[Command]gprev-with-window
Cycle to the previous group in the group list, taking the current window along.

[Command]gother
Go back to the last group.

[Command]gmerge from
Merge from into the current group. from is not deleted.

[Command]groups &optional fmt
Default Values:

fmt stumpwm:*group-format*

Display the list of groups with their number and name. *group-format* controls the
formatting. The optional argument fmt can be used to override the default group
formatting.
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[Command]vgroups &optional gfmt wfmt
Default Values:

gfmt nil

wfmt nil

Like groups but also display the windows in each group. The optional arguments
gfmt and wfmt can be used to override the default group formatting and window
formatting, respectively.

[Command]gselect &optional to-group
Default Values:

to-group nil

Accepts numbers to select a group, otherwise grouplist selects.

[Command]gmove to-group
Move the current window to the specified group.

[Command]gmove-and-follow to-group
Move the current window to the specified group, and switch to it.

[Command]gmove-marked to-group
move the marked windows to the specified group.

[Command]gkill
Kill the current group. All windows in the current group are migrated to the next
group.

[Command]gkill-other
Kill other groups. All windows in other groups are migrated to the current group.

[Command]grename name
Rename the current group.

[Command]grouplist &optional fmt
Default Values:

fmt stumpwm:*group-format*

Allow the user to select a group from a list, like windowlist for groups.

[Variable]*list-hidden-groups*
nil

[Variable]*group-top-maps*
nil

[Variable]*default-group-name*
nil
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[Function]add-group screen name &key background type
Default Values:

background nil

type stumpwm::*default-group-type*

Create a new group in SCREEN with the supplied name. group names starting with
a . are considered hidden groups. Hidden groups are skipped by gprev and gnext and
do not show up in the group listings (unless *list-hidden-groups* is T). They also use
negative numbers.

[Function]group-add-head group head
A head is being added to this group’s screen.

[Function]group-add-window group window &key frame raise &allow-other-keys
Default Values:

frame nil

raise nil

&allow-other-keys nil

Called when a window is added to the group. All house keeping is already taken care
of. Only the group’s specific window managing housekeeping need be done. This
function accepts keys to inform the group on how to place the window.

[Function]group-button-press group button x y child
The user clicked somewhere in the group.

[Function]group-current-head group
The group is asked to return its current head.

[Function]group-current-window group
The group is asked to return its focused window.

[Function]group-delete-window group window
Called when a window is removed from thegroup. All house keeping is already taken
care of. Only the group’s specific window managing housekeeping need be done.

[Function]group-focus-window group win
The group is asked to focus the specified window wherever it is.

[Function]group-indicate-focus group
The group is asked to in some way show the user where the keyboard focus is.

[Function]group-lost-focus group
The current window was hidden or destroyed or something happened to it. So the
group is asked to do something smart about it.

[Function]group-move-request group window x y relative-to
The window requested a position change.

[Function]group-raise-request group window type
A request has been made to raise the window. TYPE is the type of raise request
being made. :MAP means the window has made requested to be mapped. :above
means the window has requested to to be placed above its siblings.
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[Function]group-remove-head group head
A head is being removed from this group’s screen.

[Function]group-before-resize-head group oh nh
A head is about to be resized on this group’s screen.

[Function]group-after-resize-head group head
A head has been resized on this group’s screen.

[Function]group-resize-request group window width height
The window requested a width and/or height change.

[Function]group-root-exposure group
The root window got an exposure event. If the group needs to redraw anything on
it, this is where it should do it.

[Function]group-startup group
Called on all groups while stumpwm is starting up.

[Function]group-suspend group
When the group is no longer the current group, this function is called.

[Function]group-sync-all-heads group
Called when the head configuration for the group changes.

[Function]group-sync-head group head
When a head or its usable area is resized, this is called. When the modeline size
changes, this is called.

[Function]group-wake-up group
When the group becomes the current group, this function is called. This call is
expected to set the focus.

[Function]really-raise-window window
Really bring the window to the top of the window stack in group

[Variable]*run-or-raise-all-groups*
When this is T the run-or-raise function searches all groups for a running instance.
Set it to NIL to search only the current group.

8.1 Customizing Groups

[Variable]*group-formatters*
An alist of characters and formatter functions. The character can be used as a format
character in *group-format*. When the character is encountered in the string, the
corresponding function is called with a group as an argument. The functions return
value is inserted into the string. If the return value isn’t a string it is converted to
one using prin1-to-string.
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[Variable]*group-format*
The format string that decides what information will show up in the group listing.
The following format options are available:

%n Substitutes the group number translated via *group-number-map*, if
there are more windows than *group-number-map* then will use the
group-number.

%s The group’s status. Similar to a window’s status.

%t The group’s name.

[Function]current-group &optional screen
Default Values:

screen (stumpwm:current-screen)

Return the current group for the current screen, unless otherwise specified.
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9 Screens

StumpWM handles multiple screens.

[Command]snext
Go to the next screen.

[Command]sprev
Go to the previous screen.

[Command]sother
Go to the last screen.

[Variable]*run-or-raise-all-screens*
When this is T the run-or-raise function searches all screens for a running instance.
Set it to NIL to search only the current screen. If *run-or-raise-all-groups* is NIL this
variable has no effect.

9.1 External Monitors

StumpWM refers to each monitor as a head. Heads are logically contained by screens.
In a dual-monitor configuration, there will be one screen with two heads. Non-rectangular
layouts are supported (frames will not be created in the ’dead zone’.) And message windows
will be displayed on the current head–that is, the head to which the currently focused frame
belongs.

In addition, StumpWM listens for XRandR events and re-configures the heads to match
the new monitor configuration. Occasionally StumpWM will miss an XRandR event, use
refresh-heads to synchronize the head configuration.

[Command]refresh-heads &optional screen
Default Values:

screen (stumpwm:current-screen)

Refresh screens in case a monitor was connected, but a ConfigureNotify event was
snarfed by another program.

9.2 Programming With Screens

[Function]current-screen
Return the current screen.

[Function]screen-current-window screen
Return the current window on the specified screen

[Function]current-window
Return the current window on the current screen

[Variable]*screen-list*
The list of screens managed by stumpwm.
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10 Minor Modes

Like Emacs, StumpWM has the concept of minor modes. These are defined by the macro
DEFINE-MINOR-MODE. Defining a minor mode creates a class and a set of methods special-
izing upon it. Minor modes are scoped to a window, head, group, or screen, or they may
be unscoped. In addition to this minor modes may be local or global. When a minor mode
is global all new instances of the scope object will be created with the minor mode already
active in them. Minor modes define their own top level and root level keymaps, as well as
hooks that are run upon enabling or disabling the minor mode, and a lighter to display in
the mode line.

Minor modes are mixins that get added to the appropriate scope object when enabled.
As such minor modes allow the augmenting, modifying, and overriding of default StumpWM
behavior by defining methods for the generic functions of the scope object. For example,
a minor mode may be scoped to a window and define a method for the generic function
UPDATE-DECORATION to change how window decoration is handled for the windows it is
enabled in.

[Macro]define-minor-mode mode superclasses slots &rest options
Define a minor mode as a class to be instantiated when the minor mode is activated.
Minor modes are dynamically mixed in to and out of the appropriate object when
they are enabled or disabled.

If SUPERCLASSES is not provided a default superclass of MINOR-MODE will be
provided. OPTIONS may include all normal options when defining a class, with the
addition of the following options:

• (:SCOPE SCOPE-DESIGNATOR)
The :SCOPE option determines what object(s) the minor mode can be mixed
in with. New scopes can be defined with the macro DEFINE-MINOR-MODE-
SCOPE.

• (:GLOBAL (OR T NIL))
When true the :GLOBAL option changes the way enable methods are defined to
track the minor mode and autoenable it in all existing scope objects, as well as
autoenabled when new scope objects are instantiated. If the :SCOPE option is
:UNSCOPED then this option does not need to be provided.

• (:TOP-MAP spec)
The minor modes top map is created based upon the provided spec, which must
be a list of cons cells whose car is a key sequence and whose cdr is a binding. For
example: (list (cons "C-m x" "echo")). This would bind the key sequence
C-m x to the echo command. A reference to this keymap is stored as a slot in the
minor mode object and can be accessed via the reader MODE-KEYMAP where MODE
is the minor mode name.

• (:ROOT-MAP spec)
The minor modes root map is created based upon the provided spec. The spec
is as described in the :TOP-MAP option.

• (:EXPOSE-KEYMAPS (OR T NIL))
This value is used at macroexpansion time to determine whether or not to gen-
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erate keymap variables or store the keymap within the object. When T the
variables *MODE-TOP-MAP* and *MODE-ROOT-MAP* will be generated.

• (:REBIND (MEMBER :TOP-MAP :ROOT-MAP :ALL-MAPS))

This option controls rebinding of the top and root maps. When it is :TOP-MAP
the top map is rebound, when it is :ROOT-MAP the root map is rebound, and
when it is :ALL-MAPS both the top and root map are rebound. Any rebound
map will be rebound to the provided keymap specification. This only has an
effect if the minor mode has previously been defined.

• (:LIGHTER T)
The :LIGHTER option will be used to generate a function returning a string to
display in the mode line. When :LIGHTER is NULL a string is generated based
upon the mode name. When it is a string that string is used as is. Otherwise
:LIGHTER will assumed to be funcallable and used as is. When it is a symbol
or a list that doesn’t begin with LAMBDA or FUNCTION a warning is issued
that DEFINE-MINOR-MODE is assuming it is funcallable. When assumed to
be funcallable, it is called with the mode object as its only argument.

• (:LIGHTER-MAKE-CLICKABLE (OR T NIL))
When :LIGHTER-MAKE-CLICKABLE is T then the :LIGHTER is wrapped in
a call to FORMAT-WITH-ON-CLICK-ID, called with the id :ML-ON-CLICK-
MINOR-MODE and the mode as a quoted symbol.

• (:LIGHTER-ON-CLICK FUNCTION)
When :LIGHTER-ON-CLICK is provided it must be a function of arity one,
which will be called whenever the minor modes lighter is clicked, with the button
code of the click as its only argument. If this is provided then :LIGHTER-MAKE-
CLICKABLE is implied to be T.

• (:INTERACTIVE (OR SYMBOL T NIL))
The :INTERACTIVE option determines whether a command to toggle the minor
mode on and off is generated. If it is T then a command with the same name
as the minor mode is generated. If it is a symbol then that symbol will be used
when defining the command.

• (:ENABLE-WHEN (MODE OBJECT) &BODY BODY)
When provided, the :ENABLE-WHEN option generates a method for the enable-
when generic function. MODE is bound to the mode symbol, and OBJECT is
bound to the scope object. If this is not provided, a method is generated which
returns T for the minor mode and its scope. If it is provided and is nil, then no
method is generated and a method for ENABLE-WHEN which dispatches upon
the mode as a symbol and the scope type for the minor mode must be manually
defined.

• (:MAKE-HOOKS (OR T NIL))
When :MAKE-HOOKS is T a set of hook variables are generated. These vari-
ables are fourfold: *MODE-HOOK* is run after explicitly enabling the minor
mode. *MODE-ENABLE-HOOK* is run when the minor mode is autoenabled.
*MODE-DISABLE-HOOK* is run when the minor mode is autodisabled. Finally
*MODE-DESTROY-HOOK* is run when the minor mode is explicitly disabled.
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• (:DEFINE-COMMAND-DEFINER (OR T NIL))
When :DEFINE-COMMAND-DEFINER is T a macro is defined for defining
commands that are active only when the minor mode is active. Commands
defined with this macro have the special variable *MINOR-MODE* bound to
the minor mode object in their body. The generated macro is called DEFINE-
MODE-COMMAND. This option defaults to T.

• (:MIX-BEFORE &REST RULES)
The :MIX-BEFORE option defines rules on the order this class should be mixed
in relative to other minor modes. This allows the implementer of a minor
mode to make the mixing process aware of dependencies that dont otherwise
make sense as a class hierarchy; If minor modes FOO and BAR both define
around methods for the same method, but FOO’s method must be called first,
FOO can add a rule stating that it must come before BAR in the mixin list.
RULES must be a set of conses which have the form (SYMBOL-DESIGNATOR
. PACKAGE-DESIGNATOR). SYMBOL-DESIGNATOR must be a valid argu-
ment to #’STRING, and PACKAGE-DESIGNATOR must be a valid argument
to #’FIND-PACKAGE. Together these shall form a single symbol which should
be the class name of the minor mode being referred to by the rule.

• (:MIX-AFTER &REST RULES)
The :MIX-AFTER option is similar to the :MIX-BEFORE option, except it
specifies classes that this minor mode should occur after in the mixin list.

Example:

(define-minor-mode evil-mode () ()

(:scope :unscoped)

(:top-map '(("j" . "move-focus down")

("k" . "move-focus up")

("h" . "move-focus left")

("l" . "move-focus right")

("x" . *exchange-window-map*)

("C-m b" . "evil-echo")))

(:lighter "EVIL")

(:lighter-make-clickable nil))

(define-evil-mode-command evil-echo () ()

(run-commands "echo"))

10.1 Programming With Minor Modes

Minor modes get their power from their ability to override and augment generic functions
which are called with the minor mode’s scope object as an argument. If you find a function
whose behavior you wish to augment or override in the process of writing a minor mode,
open an issue or submit a PR to generify the function. Generification is easily done like so:

(defun somefun (a b)

"docstring"

(otherfun (+ a b)))

;; the above becomes
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(defgeneric somefun (a b)

(:documentation "docstring")

(:method (a b)

(otherfun (+ a b))))

When defining a minor mode, the programmer may desire to perform setup for the
minor mode. This is can be done in three ways. The first is to hang a function upon
the minor modes enable hook. However this runs the risk of users potentially clobbering
the initialization function, or modifying the hook such that the initialization function is
not the first function run. The second way is to define a method for the generic function
update-instance-for-different-class. This function should specialize upon the minor
mode as the second argument. As a final option, one can define before, after, and around
methods for the generic function autoenable-minor-mode if and only if the method does
not access any slots within the object.

One of the pitfalls of minor modes is that they are ultimately enabled by calling change-
class, which places some restrictions upon where they can be enabled. Specifically, it is
implied to be undefined behavior if a minor mode is enabled in an object from within a
method which accesses slots of that object. While in practice this has not proven to be an
issue at the time of writing, this is undefined behavior and future versions of SBCL may
break if this is done.

When writing a minor mode, it is often useful to separate out the desired functionality
into its own mixin classes and use those in the superclass list of the minor mode. For
example:

(define-minor-mode my-mode (my-mixin minor-mode) ())

This prevents issues with inheritance and dynamic mixins from cropping up. Since minor
modes are just classes, a minor mode can descend from another minor mode. However after
enabling the subclass minor mode, the superclass minor mode cannot be enabled. However
if the superclass minor mode is enabled first, then the subclass minor mode can be enabled.
The easiest way around this is the aforementioned approach of mixins. As an example of
the inheritance issue, take the following minor mode definitions:

(define-minor-mode x () ())

(define-minor-mode y (x) ())

(enable-minor-mode 'x)

(enable-minor-mode 'y) ; both modes are enabled

;; As opposed to

(enable-minor-mode 'y)

(enable-minor-mode 'x) ; signals an error

When enabling and disabling minor modes theres a set of generic functions in charge of
determining what object to mix the minor mode in to and whether or not to mix it.

[Function]autoenable-minor-mode mode object
The core of enabling minor modes within an object. Mixes the minor mode in to the
object

Defining a minor mode defines a main method for this generic function which will mix
the minor mode into the scope object when called and returns T. This method specializes
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upon the minor mode symbol and the scope type. The minor mode will only be enabled
and the hooks run when the function ENABLE-WHEN returns T. Any before after or around
methods for this function must not access any slots.

[Function]autodisable-minor-mode mode object
The core of disabling minor modes within an object. Calls the minor modes on-disable
function.

Defining a minor mode defines a main method for this generic function which specializes
upon the mode symbol and the mode, and removes the minor mode from the object. Any
methods for this function must not access any slots.

[Function]enable-when mode object
Define methods for this generic function to control when the minor mode should be
enabled.

Outside of autoenabling and autodisabling minor modes, there are several generic func-
tions which dispatch upon minor modes and their names.

[Function]minor-mode-global-p minor-mode-symbol
Return T when MINOR-MODE-SYMBOL denotes a global minor mode

[Function]minor-mode-scope minor-mode-symbol
Return as a keyword the scope of the minor mode

[Function]minor-mode-enable-hook minor-mode-symbol
Returns the minor mode enable hook for a given minor mode symbol. This hook is
run whenever the minor mode is enabled via autoenable.

[Function]minor-mode-disable-hook minor-mode-symbol
Returns the minor mode disable hook for a given minor mode symbol. This hook is
run whenever the minor mode is disabled via autodisable.

[Function]minor-mode-hook minor-mode-symbol
Returns the minor mode hook for a given minor mode symbol. This hook is run
whenever the minor mode is explicitly enabled.

[Function]minor-mode-keymap minor-mode
Return the top map for the minor mode

This function has a set of main methods defined which all call the next method to obtain
a list of top maps for every minor mode. Any extra keymaps one wishes to add to the minor
mode may be added by defining a main method which calls call-next-method and returns
a flat list. Similarly, an around method may be used which abides by the same rules.

[Function]minor-mode-lighter mode
Return a string of minor mode lighters.

This function operates similarly to minor-mode-keymap, with a main method defined
for every minor mode which calls call-next-method and returns a flat list. In addition
there is a single around method defined which concatenates all these strings together.

There are also a set of regular functions and special variables which which may be of use
when working with minor modes.
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[Function]enable-minor-mode minor-mode &optional scope-object
Default Values:

scope-object nil

Enable MINOR-MODE. If MINOR-MODE is global, then enable it in all relevant
objects. Otherwise enable it in the current object. If SCOPE-OBJECT is provided,
use SCOPE-OBJECT instead of the current object, or include it in the list of current
objects if MINOR-MODE is global

[Function]disable-minor-mode minor-mode &optional scope-object
Default Values:

scope-object nil

Disable MINOR-MODE in the relevant objects.

[Function]list-modes object
List all minor modes followed by the major mode for OBJECT.

[Function]list-minor-modes object
List all minor modes active in OBJECT

[Function]current-minor-modes &optional screen
Default Values:

screen (stumpwm:current-screen)

Return all currently active minor modes.

[Function]minor-mode-enabled-p minor-mode &optional screen
Default Values:

screen (stumpwm:current-screen)

Return T if MINOR-MODE is active

[Function]find-minor-mode minor-mode &optional screen
Default Values:

screen (stumpwm:current-screen)

Return the minor mode object associated with MINOR-MODE.

[Variable]*minor-mode*
A dynamic variable bound to the minor mode object when executing a minor mode
command.

[Variable]*minor-mode-enable-hook*
A hook run whenever a minor mode is enabled. Functions are called with the minor
mode symbol and the object they have been added to. This is run when a minor
mode is explicitly enabled via enable-minor-mode.

[Variable]*minor-mode-disable-hook*
A hook run whenever a minor mode is disabled. Functions are called with the minor
mode symbol and the scope object. This is run when a minor mode is explicitly
disabled via disable-minor-mode. This is run AFTER the minor mode has been
disabled, and is called with the minor mode and the first object it was disabled in.
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[Variable]*unscoped-minor-modes*
A dynamic variable holding all unscoped minor modes as mixed into the same object.

[Class]minor-mode
The root minor mode class. All minor modes are subclasses of this class.
Direct Superclasses: standard-object
Direct Subclasses:
Direct Slots:

10.2 Minor Mode Scopes

Minor modes can be scoped to different objects in a rather arbitrary manner. These scopes
are defined by the macro DEFINE-MINOR-MODE-SCOPE. Because minor modes are imple-
mented as mixins, the object returned by a scopes current object function must be a class
instance.

[Macro]define-minor-mode-scope (designator class &optional filter-type)
&body retrieve-current-object

Default Values:

filter-type nil

Define a minor mode scope for use with DEFINE-MINOR-MODE. This generates
a call to ADD-MINOR-MODE-SCOPE which is evaluated when compiled, loaded,
or executed. DESIGNATOR should be a keyword and TYPE should denote a
class, while FILTER-TYPE should denote a general type. RETRIEVE-CURRENT-
OBJECT should be a thunk body which returns the current object for this
scope.

[Macro]define-descended-minor-mode-scope designator parent &key class
filter-type retrieve-current-object

Default Values:

class nil

filter-type nil

retrieve-current-object nil

Define a descended scope which inherits the parents type and functions unless pro-
vided.

[Function]add-minor-mode-scope designator type current-object-thunk
&optional filter-type

Default Values:

filter-type nil

Add a list of the TYPE, CURRENT-OBJECT-THUNK, and ALL-OBJECTS-
THUNK, under DESIGNATOR in the minor mode scope hash table.

When a minor mode is defined its scope is looked up and validated by the function
VALIDATE-SCOPE. This function takes a scope and a list of superclasses, and ensures that
the scope can descend from the superclasses scopes. This restricts the valid scopes to
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ensure that a minor mode scoped to :GROUP cant be a subclass of a minor mode scoped to
:WINDOW, for example. However there is a way to override this by explicitly stating that two
otherwise incompatible scopes are compatible. This is done by defining methods for the
generic function VALIDATE-SUPERSCOPE which dispatch upon the scope designators. Such
methods should return at least one value, indicating if the superscope is a valid parent
of the scope. If multiple values are returned, the second value must indicate whether the
superscope is an invalid parent of the scope. For example:

(defmethod stumpwm:validate-superscope ((c (eql :id1)) (p (eql :id2)))

"Explicitly allow id1 to descend from id2"

(values t nil))

(defmethod stumpwm:validate-superscope ((c (eql :id3)) (p (eql :id4)))

"Explicitly prevent id3 from descending from id4"

(values nil t))

When defining and using scopes the type specifier is important; it is used to determine
what minor modes should be mixed into an object when it is created. For this reason it
is important when defining a minor mode or minor mode scope to understand the type
hierarchy. It may also be in the programmers best interests to define an accompanying
type.

The following scopes are predefined:

• Designator: :UNSCOPED, type: T Current object: return the global unscoped object.

• Designator: :SCREEN, type: SCREEN Current object: return the current screen.

• Designator: :GROUP, type: GROUP Current object: return the current group.

• Designator: :TILE-GROUP, type: TILE-GROUP Current object: return the current group.

• Designator: :DYNAMIC-GROUP, type: DYNAMIC-GROUP Current object: return the current
group.

• Designator: :FLOAT-GROUP, type: FLOAT-GROUP Current object: return the current
group.

• Designator: :TILING-NON-DYNAMIC-GROUP, type: TILE-GROUP Current object: return
the current group when it is a non-dynamic tiling group.

• Designator: :HEAD, type: HEAD Current object: return the current head.

• Designator: :FRAME, type: FRAME Current object: return the current frame when in a
tiling group.

• Designator: :FRAME-EXCLUDING-HEAD, type: ONLY-FRAME-NO-HEADS Descends from
minor mode scope :FRAME.
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• Designator: :WINDOW, type: WINDOW

Current object: return the current window.
All objects: collect every window from every group in the current screen.

• Designator: :TILE-WINDOW, type: TILE-WINDOW

Current object: return the current window.
All objects: collect every window from every tiling group, filtering all floating windows.

• Designator: :FLOAT-WINDOW, type: FLOAT-WINDOW

Current object: return the current window.
All objects: colelct every window from every group, filtering all non floating windows.

10.3 Minor Mode Example

A simple example of a minor mode is a version of the Emacs modes viper or evil for
StumpWM. Such a minor mode might look like this:

(define-minor-mode swm-evil-mode () ()

(:scope :screen)

(:interactive t)

(:top-map '(("i" . "swm-evil-mode")

("j" . "move-focus down")

("k" . "move-focus up")

("h" . "move-focus left")

("l" . "move-focus right")

("p" . "pull-hidden-previous")

("n" . "pull-hidden-next")

("S" . "hsplit")

("s" . "vsplit")

("r" . "remove-split")

("g" . *groups-map*)

("x" . *exchange-window-map*)))

(:lighter-make-clickable nil)

(:lighter "EVIL"))

In the above example, the minor mode swm-evil-mode is defined, alongside a command
of the same name which toggles it on and off. The minor mode is scoped to a screen,
meaning that upon activation it will be dynamically mixed in to the screen object. The
lighter is the string "EVIL" and the lighter is not made clickable.

When defining a minor mode top map it is important to avoid multi-key bindings that
clobber the prefix key. For example, if the prefix key is C-t then defining the keybinding
C-t n in the top map of a minor mode is an error. Instead bind the key n in the minor
mode’s root map.

As another example we can define a frame topbar mode. This should adjust every frame
to leave extra space at the top of the frame to display a bar of some sort. The following
assumes that the functions frame-display-height and frame-display-y are generic.

(defclass frame-topbar ()

((frame-topbar-height :initform 10 :accessor frame-topbar-height)))
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(defmethod frame-display-height :around (group (frame frame-topbar))

(let ((height (call-next-method)))

(- height (frame-topbar-height frame))))

(defmethod frame-display-y :around (group (frame frame-topbar))

(let ((y (call-next-method)))

(+ y (frame-topbar-height frame))))

(define-minor-mode frame-bar (frame-topbar minor-mode) ()

(:global t)

(:scope :frame)

(:lighter "T-BAR")

(:interactive frame-topbar-mode))

(defmethod update-instance-for-different-class :after

(prev (obj frame-bar) &rest rest)

(declare (ignore prev rest))

(when (frame-window obj)

(let* ((group (window-group (frame-window obj)))

(windows (frame-windows group obj)))

(mapc #'maximize-window windows))))

In the above example, a class is defined which holds the height of the frame topbar.
Then two around methods are defined such that windows querying the frame for their y
position and height get an updated value reflecting the topbars presence. Then a minor
mode is defined which inherits from the class we defined. It is scoped to frames and is
a global minor mode, so it will be enabled in all existing frames and any other frames
as they are created. Finally the initialization is handled in the after method for update-
instance-for-different-class, which updates every window to have a new size which respects
the topbar.

The implementation of the actual topbar is left as an exercise for the reader.
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11 Internals

11.1 IO Loop

StumpWM’s internal loop is implemented by a generic multiplexing I/O loop for listening
to I/O events from multiple sources. The model is as follows:

An I/O multiplexer is represented as an object, with which I/O channels can be regis-
tered to be monitored for events when the I/O loop runs. An I/O channel is any object
for which the generic functions IO-CHANNEL-IOPORT, IO-CHANNEL-EVENTS and IO-
CHANNEL-HANDLE are implemented.

IO-CHANNEL-IOPORT, given an I/O multiplexer and an I/O channel, should return
the underlying system I/O facility that the channel operates on. The actual objects used
to represent an I/O facility depends on the Lisp implementation, operating system and
the specific I/O loop implementation, but, for example, on Unix implementations they will
likely be numeric file descriptors. The I/O loop implementation implements IO-CHANNEL-
IOPORT methods for the facilities it understands (such as FD-STREAMs on SBCL), so
user-implemented channels should simply call IO-CHANNEL-IOPORT recursively on what-
ever it operates on.

IO-CHANNEL-EVENTS, given an I/O channel, should return a list of the events that
the channel is interested in. See the documentation for IO-CHANNEL-EVENTS for further
details.

The I/O loop guarantees that it will check what events a channel is interested in when
it is first registered, and also at any time the channel has been notified of an event. If the
channel changes its mind at any other point in time, it should use the IO-LOOP-UPDATE
function to notify the I/O loop of such changes. The I/O loop may very well also update
spuriously at other times, but such updates are not guaranteed.

IO-CHANNEL-HANDLE is called by the I/O loop to notify a channel of an event.

An I/O multiplexer is created with a MAKE-INSTANCE call on the class of the desired
multiplexer implementation. If the code using the multiplexer has no certain preferences on
an implementation (which should be the usual case), the variable *DEFAULT-IO-LOOP*
points to a class that should be generally optimal given the current Lisp implementation
and operating system.

Given a multiplexer, channels can be registered with it using IO-LOOP-ADD, unreg-
istered with IO-LOOP-REMOVE, and updated with IO-LOOP-UPDATE (as described
above). Call IO-LOOP on the multiplexer to actually run it.

[Variable]*default-io-loop*
The default I/O loop implementation. Should be generically optimal for the given
LISP implementation and operating system.

[Variable]*current-io-loop*
Dynamically bound to the I/O loop currently running, providing an easy way for
event callbacks to register new channels.

[Variable]*current-io-channel*
While processing an I/O channel, this variable is dynamically bound to the channel
in question. This is provided primarily for error-handling code.
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[Function]io-channel-ioport io-loop channel
Returns the I/O facility operated on by CHANNEL, in a representation understood
by IO-LOOP. CHANNEL may be either an I/O channel or an object representing an
underlying I/O facility, such as a stream object. An I/O loop implementation should
implement methods for any primitive I/O facilities that it can monitor for events,
and abstract channels should return whatever IO-CHANNEL-IOPORT returns for
the primitive facility that it operates on.

An I/O channel may also return NIL to indicate that it is only interested in purely
virtual events, such as :TIMEOUT or :LOOP.

[Function]io-channel-events channel
Returns a list of events that CHANNEL is interested in. An event specification may
be a simple symbol, or a list of a symbol and additional data for the event. Specific
I/O loop implementations may implement additional events, but the following event
specifications should be supported by all I/O loops:

:READ – The channel will be notified when its I/O port can be read from without
blocking.

:WRITE – The channel will be notified when its I/O port can be written to without
blocking.

(:TIMEOUT TIME-SPEC) – TIME-SPEC is a point in time in the same units as
from (GET-INTERNAL-REAL-TIME), at which point the channel will be notified.
It is permissible for TIME-SPEC to be a real number of any representation, but the
system does not guarantee any particular level of accuracy.

:LOOP – The channel will be notifed for each iteration of the I/O loop, just before
blocking for incoming events. This should be considered a hack to be avoided, but
may be useful for certain libraries (such as XLIB).

If, at any time, an empty list is returned, the channel is unregistered with the I/O
loop.

The I/O loop will check what events a channel is interested in when it is first registered
with the loop, and whenever the channel has been notified of an event. If the channel
changes its mind at any other point in time, it should use the IO-LOOP-UPDATE
function to notify the I/O loop of such changes. The I/O loop may also update
spuriously at any time, but such updates are not guaranteed.

[Function]io-channel-handle channel event &key &allow-other-keys
Default Values:

&allow-other-keys nil

Called by the I/O loop to notify a channel that an event has occurred. EVENT is the
symbol corresponding to the event specification from IO-CHANNEL-EVENTS (that
is, :READ, :WRITE, :TIMEOUT or :LOOP). A number of keyword arguments with
additional data specific to a certain event may also be passed, but no such arguments
are currently defined.

[Function]io-loop-add io-loop channel
Add a channel to the given I/O multiplexer to be monitored.
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[Function]io-loop-remove io-loop channel
Unregister a channel from the I/O multiplexer.

[Function]io-loop-update io-loop channel
Make the I/O loop update its knowledge of what events CHANNEL is interested in.
See the documentation for IO-CHANNEL-EVENTS for more information.

[Function]io-loop io-loop &key description &allow-other-keys
Default Values:

description nil

&allow-other-keys nil

Run the given I/O multiplexer, watching for events on any channels registered with
it. IO-LOOP will return when it has no channels left registered with it.

11.2 Internal Functions Documentation

[Variable]*executing-stumpwm-command*
True when executing external commands.

[Variable]*suppress-abort-messages*
Suppress abort message when non-nil.

[Command]refresh-time-zone
Refresh the time zone information from the system.

If you change the system time zone while StumpWM is running you can run this
command to make StumpWM notice the change.

[Command]getsel
Echo the X selection.

[Command]putsel string
Stuff the string string into the x selection.

[Command]copy-unhandled-error
When an unhandled error occurs, StumpWM restarts and attempts to continue. Un-
handled errors should be reported to the mailing list so they can be fixed. Use this
command to copy the unhandled error and backtrace to the X11 selection so you can
paste in your email when submitting the bug report.

[Function]define-stumpwm-command &rest args
nil

[Command]set-contrib-dir
Deprecated, use ‘add-to-load-path’ instead
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12 Interacting With Unix

[Command]run-shell-command cmd &optional collect-output-p
Default Values:

collect-output-p nil

Run the specified shell command. If collect-output-p is T then run the command
synchonously and collect the output. Be careful. If the shell command doesn’t return,
it will hang StumpWM. In such a case, kill the shell command to resume StumpWM.

[Function]programs-in-path &optional full-path path
Default Values:

full-path nil

path (stumpwm:split-string (stumpwm:getenv "PATH") ":")

Return a list of programs in the path. If full-path is t then return the full path,
otherwise just return the filename. path is by default the PATH evironment variable
but can be specified. It should be a string containing each directory seperated by a
colon.

[Function]pathname-is-executable-p pathname
Return T if the pathname describes an executable file.

[Function]pathname-as-directory pathspec
Converts the non-wild pathname designator PATHSPEC to directory form.

[Function]run-or-raise cmd props &optional all-groups all-screens
Default Values:

all-groups stumpwm:*run-or-raise-all-groups*

all-screens stumpwm:*run-or-raise-all-screens*

Run the shell command, cmd, unless an existing window matches props. props is a
property list with the following keys:

:class Match the window’s class.

:instance

Match the window’s instance or resource-name.

:role Match the window’s WM_WINDOW_ROLE.

:title Match the window’s title.

By default, the global *run-or-raise-all-groups* decides whether to search all groups
or the current one for a running instance. all-groups overrides this default. Similarily
for *run-or-raise-all-screens* and all-screens.

[Variable]*shell-program*
The shell program used by run-shell-command.

[Function]getenv var
Return the value of the environment variable.

[Function](setf getenv) val var
Set the value of the environment variable, var to val.





85

13 Interacting With X11

[Function]set-x-selection text &optional selection
Default Values:

selection stumpwm:*default-selections*

Set the X11 selection string to string.

[Function]get-x-selection &optional timeout selection
Default Values:

timeout nil

selection stumpwm:*default-selections*

Return the x selection no matter which client owns it.

[Variable]*default-selections*
A keyword or list, one of: :primary or ’(:primary) uses only the "primary" selection
:clipboard or ’(:clipboard) uses only the "clipboard" selection Both can be specified
in a list like ’(:primary :clipboard). In this case, set-x-selection will clobber both, and
get-x-selection will default to the first item.

[Variable]*x-selection*
This is a plist of stumpwm’s current selections. The different properties are generally
set when killing text in the input bar.
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14 Miscellaneous Commands

The following is a list of commands that don’t really fit in any other

[Function]split-string string &optional separators
Default Values:

separators "

"

Splits STRING into substrings where there are matches for SEPARATORS. Each
match for SEPARATORS is a splitting point. The substrings between the splitting
points are made into a list which is returned. ***If SEPARATORS is absent, it
defaults to "[ ftnrv]+".

If there is match for SEPARATORS at the beginning of STRING, we do not include
a null substring for that. Likewise, if there is a match at the end of STRING, we
don’t include a null substring for that.

Modifies the match data; use ‘save-match-data’ if necessary.

[Function]argument-line-end-p input
Return T if we’re outta arguments from the input line.

[Function]argument-pop input
Pop the next argument off.

[Function]argument-pop-rest input
Return the remainder of the argument text.

[Variable]*display*
The display for the X server

[Function]input-delete-region input start end
Delete the region between start and end in the input string

[Function]input-goto-char input point
Move the cursor to the specified point in the string

[Function]input-point input
Return the position of the cursor.

[Function]input-substring input start end
Return a the substring in INPUT bounded by START and END.

[Function]input-validate-region input start end
Return a value pair of numbers where the first number is < the second and neither
excedes the bounds of the input string.

[Function]list-directory dirname
Returns a fresh list of pathnames corresponding to the truenames of all files within the
directory named by the non-wild pathname designator DIRNAME. The pathnames of
sub-directories are returned in directory form - see PATHNAME-AS-DIRECTORY.
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[Macro]move-to-head list elt
Move the specified element in in LIST to the head of the list.

[Function]no-focus group last-win
don’t focus any window but still read keyboard events.

[Variable]*record-last-msg-override*
assign this to T and messages won’t be recorded. It is recommended this is assigned
using LET.

[Variable]*toplevel-io*
Top-level I/O loop

14.1 Menus

14.2 Menus

There are three different types of menus in StumpWM; single selection menus; interactive
menus; and batch menus. Single-selection menus, as the name suggests, are used to pick a
single item from a list. Interactive menus are used for marking multiple selections. Batch
menus are used for performing actions on multiple menu items. Both batch and interactive
menus share the same navigational keybindings, which are found in the table below. These
can be customized by modifying the *menu-map* variable. Commands specific to each
menu type can be modified by *single-menu-map* and *batch-menu-map*.

C-p

Up

k Highlight the previous menu option.

C-n

Down

j Highlight the next menu option.

S-Down Scroll the entire page down one entry.

S-Up Scroll the entire page up one entry.

PageUp Scroll up one page.

PageDown Scroll down one page.

C-g

ESC Abort the menu.

In addition, you can customize the number of items shown at a time (a page) with the
*menu-maximum-height* variable. The default value, 50, limits the menu size to 50 items.
Setting it to nil will remove the limit on how many menu entries are shown (be careful,
this can crash X11 when attempting to display a large amount of items).

[Variable]*menu-map*
The keymap used by the interactive menu.

[Function]menu-page-up menu
Move a whole page down in the menu
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[Function]menu-page-down menu
Move a whole page up in the menu

[Function]menu-up menu
Move menu cursor up

[Function]menu-down menu
Move menu cursor down

[Function]menu-scroll-up menu
Scroll the menu up

[Function]menu-scroll-down menu
Scroll the menu down

[Function]menu-abort menu
What to do when exiting the menu without results. Must signal :menu-quit with the
result.

[Function]menu-backspace menu
What occurs when backspace is pressed in a menu

[Function]menu-entry-apply menu-entry function
Apply FUNCTION to the data portion of the menu entry.

[Function]menu-entry-display menu-entry
Generates a string suitable for displaying in a menu

[Function]menu-finish menu
What to do when exiting the menu with results. Must signal :menu-quit with the
result.

[Function]command-menu screen items command-list &key prompt
initial-selection extra-keymap

Default Values:

prompt "Select:"

initial-selection 0

extra-keymap nil

Use batch-menu to make selections and run commands specified in command-list.

SCREEN: The screen to display the menu on.

ITEMS: The items to be shown in the list. This is expected to be a list of menu-items.

COMMAND-LIST: A list of entries defining the commands associated with each mark.
Only marks that are defined are allowed in the menu. The format for these entries is
(mark-character function calling-options).

Available calling-options: :single (Default) Each value is passed separately to the
supplied function. :all all values selected with this mark are passed to the function in
a list.

Example: ’((#d ’delete-window) (#m ’move-multiple-windows :all))
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14.2.1 Single Selection Menus

Single selection menus can be searched; start typing when the menu is active, and the results
are immediately filtered. Use RET to selected the highlighted option.

RET Select the highlighted option.

[Variable]*single-menu-map*
The keymap used by single selection menus in addition to *menu-map*

[Function]select-from-menu screen table &optional prompt initial-selection
extra-keymap filter-pred

Default Values:

prompt "Search:"

initial-selection 0

extra-keymap nil

filter-pred #'stumpwm::menu-item-matches-regexp

Prompt the user to select from a menu on SCREEN. TABLE can be a list of values
or a nested list. If it’s a nested list, the first element in the sublist is displayed in the
menu. What is displayed as menu items must be strings.

EXTRA-KEYMAP can be a keymap whose bindings will take precedence over the
default bindings.

FILTER-PRED should be a a function returning T when a certain menu item should
be visible to the user. It should accept arguments

ITEM-STRING (the string shown to the user), ITEM-OBJECT (the object corre-
sponding to the menu item), and USER-INPUT (the current user input). The default
is MENU-ITEM-MATCHES-REGEXP. Returns the selected element in TABLE or
nil if aborted.

14.2.2 Batch Menus

Batch menus provide a menu that allows the user to mark items. Items are marked by
highlighting an item, then pressing a corresponding key. The key pressed depends on the
menu being shown, and the desired action. For example, in a menu allowing users to manage
windows, windows to be closed/removed could be marked by d, and windows to be raised
could be marked by r. All available actions and their keybindings are shown below. These
can be customized with *batch-menu-map*.

n

Space Highlight the next item.

p Highlight the previous item.

u Unmark the selected item, then move the cursor down.

DEL Unmark the selected item, then move the cursor up if it is not at the top of the
menu.

x

RET Exit the menu and perform the actions associated with each mark.
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[Variable]*batch-menu-map*
The keymap used by batch-menu menus in addition to *menu-map*

[Function]select-from-batch-menu screen table &key prompt allowed-markers
initial-selection extra-keymap

Default Values:

prompt "Select:"

allowed-markers nil

initial-selection 0

extra-keymap nil

Prompt the user with a menu that allows them to mark each item with a character.
They can exit the menu by pressing enter, or whatever key is mapped to ’menu-
finish’ in *menu-map*. Value returned is an alist, where the cdr of each entry is a
list of items that were marked with that character. Note that the lisp printer cannot
distinguish between ’(a . (b c d)) and ’(a b c d).

Example when "foo" and "bar" are marked with ’#d’, and "baz" is not marked:
((#d "foo" "bar") (NIL "baz")) ALLOWED-MARKERS is a list of characters. If
this parameter is specified, no other markers are allowed. EXTRA-KEYMAP can be
a keymap whose bindings will take precedence over the default bindings.

14.3 StumpWM’s Data Directory

If you want to store StumpWM data between sessions, the recommended method is to store
them in ~/.stumpwm.d/. StumpWM supplies some functions to make doing this easier.

[Variable]*data-dir*
The directory used by stumpwm to store data between sessions.

[Function]data-dir-file name &optional type
Default Values:

type nil

Return a pathname inside stumpwm’s data dir with the specified name and type

[Macro]with-data-file (s file &rest keys &key (if-exists supersede)
&allow-other-keys) &body body

Open a file in StumpWM’s data directory. keyword arguments are sent directly to
OPEN. Note that IF-EXISTS defaults to :supersede, instead of :error.

14.4 Debugging StumpWM

[Variable]*debug-level*
Set this variable to a number > 0 to turn on debugging. The greater the number the
more debugging output.

[Variable]*debug-stream*
This is the stream debugging output is sent to. It defaults to *error-output*. It may
be more convenient for you to pipe debugging output directly to a file.
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[Variable]*debug-expose-events*
Set this variable for a visual indication of expose events on internal StumpWM win-
dows.

[Function]redirect-all-output file
Elect to redirect all output to the specified file. For instance, if you want everything
to go to ~/.stumpwm.d/debug-output.txt you would do:

(redirect-all-output (data-dir-file "debug-output" "txt"))

14.5 Sending a Bug Report

While StumpWM’s code-base is quite mature, it still contains some bugs. If you encounter
one here are some guidelines for making sure the developers can fix it:

• Include a procedure for reproducing the bug/bad behavior. Ideally this will include
numbered steps starting with instructions on how you start StumpWM. Also include
what the expected behavior was.

• Be as detailed as possible. Then add more detail!

• Make sure its not something you introduced by using an empty .xinitrc containing
only ‘exec /path/to/stumpwm’.

• Make sure the bug is present even when .stumpwmrc is empty.

• If you are using the git version, include the hash of the master branch, or better include
the commit when you started to notice the bug.

• If you have code that fixes the bug, then open a pull request at https://github.com/
stumpwm/stumpwm/compare/.

• If you don’t have code to fix the bug, then open an issue at https://github.com/

stumpwm/stumpwm/issues/new.

14.6 Timers

StumpWM has a timer system similar to that of Emacs.

[Function]idle-time screen
Returns the time in seconds since idle according to the root window of the ‘screen’.

[Function]run-with-timer secs repeat function &rest args
Perform an action after a delay of SECS seconds. Repeat the action every REPEAT
seconds, if repeat is non-nil. SECS and REPEAT may be reals. The action is to call
FUNCTION with arguments ARGS.

[Function]cancel-timer timer
Remove TIMER from the list of active timers.

[Function]timer-p timer
Return T if TIMER is a timer structure.

https://github.com/stumpwm/stumpwm/compare/
https://github.com/stumpwm/stumpwm/compare/
https://github.com/stumpwm/stumpwm/issues/new
https://github.com/stumpwm/stumpwm/issues/new
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14.7 Getting Help

[Command]describe-key keys
Either interactively type the key sequence or supply it as text. This command prints
the command bound to the specified key sequence.

[Command]describe-variable var
Print the online help associated with the specified variable.

[Command]describe-function fn
Print the online help associated with the specified function.

[Command]describe-command com
Print the online help associated with the specified command.

[Command]where-is cmd
Print the key sequences bound to the specified command.

[Command]modifiers
List the modifiers stumpwm recognizes and what MOD-X it thinks they’re on.

[Command]which-key-mode
Toggle which-key-mode

[Function]lookup-command keymap command
Return a list of keys that are bound to command

[Variable]*help-map*
Help related bindings hang from this keymap

[Variable]*help-keys*
The list of keys used to invoke the help command.





95

15 Colors

When specifying a color, it is possible to use its X11 Color Name (usually in the file
/etc/X11/rgb.txt). You can also use a six digit hex string prefixed by a ’#’ character in
the same way that you can specify colors in HTML.

All text printed by StumpWM is run through a coloring engine before being displayed.
All color commands start with a ‘^’ (caret) character and apply to all text after it.

^0-9 A caret followed by a single digit number changes the foreground color to the
specified color. A ‘*’ can be used to specify the normal color. See the color
listing below.

^0-90-9 A caret followed by two digits sets the foreground and background color. The
first digit refers to the foreground color and the second digit to the background
color. A ‘*’ can be used in place of either digit to specify the normal color. See
the color listing below.

^B Turn on bright colors.

^b Turn off bright colors.

^n Use the normal background and foreground color.

^R Reverse the foreground and background colors.

^r Turn off reverse colors.

^[ Push the current colors onto the color stack. The current colors remain un-
changed.

^] Pop the colors off the color stack.

^> Align the rest of the line to the right of the window.

^f<n> Sets the current font to the font at index n in the screen’s font list.

^(<modifier> &rest arguments)

Allows for more complicated color settings: <modifier> can be one of :fg, :bg,
:reverse, :bright, :push, :pop, :font and :>. The arguments for each modifier
differ:

• :fg and :bg take a color as an argument, which can either be a numeric
index into the color map or a hexadecimal color in the form of "#fff" or
"#ffffff".

• :reverse and :bright take either t or nil as an argument. T enables the
setting and nil disables it.

• :push and :pop take no arguments. :push pushes the current settings onto
the color stack, leaving the current settings intact. :pop pops color settings
off the stack, updating the current settings.

• :font takes an integer that represents an index into the screen’s list of fonts,
or, possibly, a literal font object that can immediately be used. In a string
you’ll probably only want to specify an integer.

• :> takes no arguments. It triggers right-alignment for the rest of the line.
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• :on-click takes one or more arguments and registers the following text area
as clickable. The initial argument must be an ID registered using the
function REGISTER-ML-ON-CLICK-ID.

• :on-click-end takes no arguments. It marks the end of clickable text begun
by :on-click.

^^ Print a regular caret.

The default colors are made to resemble the 16 VGA colors and are:

0 black

1 red

2 green

3 yellow

4 blue

5 magenta

6 cyan

7 white

There are only 8 colors by default but 10 available digits. The last two digits are left up
to the user. Section 15.1 [Behind The Scenes Look At Colors], page 96, for information on
customizing colors.

15.1 Behind The Scenes Look At Colors

Color indexes are stored in *colors* as a list. The default list of colors leave 2 slots for the
user to choose. If you’d like to use ‘Papaya Whip’ and ‘Dark Golden Rod 3’ you might eval
the following:

(setf *colors* (append *colors*

(list "PapayaWhip"

"DarkGoldenRod3")))

(update-color-map (current-screen))

Of course, you can change all the colors if you like.

Additionally, both the normal and bright versions of a color can be specified by using a
list of the form (normal-color bright-color), for instance:

(setf *colors* (append *colors*

(list (list "PeachPuff" "PapayaWhip")

(list "DarkGoldenRod3" "PaleGoldenrod"))))

(update-color-map (current-screen))

[Function]parse-color-string string
Parse a color-coded string into a list of strings and color modifiers

[Function]uncolorify string
Remove any color markup in STRING
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[Variable]*colors*
Eight colors by default. You can redefine these to whatever you like and then call
(update-color-map).

[Function]update-color-map screen
Read *colors* and cache their pixel colors for use when rendering colored text.
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16 Hooks

StumpWM exports a number of hooks you can use to add customizations; like hooks in
Emacs, you add to a hook with the add-hook function. For example:

(stumpwm:add-hook 'stumpwm:*new-window-hook* 'my-new-window-custos)

adds your my-new-window-custos function to the list of functions called when a new
window appears.

[Macro]add-hook hook fn
Add function to the hook-variable. For example, to display a message whenever you
switch frames:

(defun my-rad-fn (to-frame from-frame)

(stumpwm:message "Mustard!"))

(stumpwm:add-hook stumpwm:*focus-frame-hook* 'my-rad-fn)

[Macro]remove-hook hook fn
Remove the specified function from the hook.

[Macro]remove-all-hooks hook
Remove all functions from a hook

[Function]run-hook hook
Call each function in HOOK.

[Function]run-hook-with-args hook &rest args
Call each function in HOOK and pass args to it.

The following hooks are available:

[Hook]*new-window-hook*
A hook called whenever a window is added to the window list. This includes a
genuinely new window as well as bringing a withdrawn window back into the window
list.

[Hook]*destroy-window-hook*
A hook called whenever a window is destroyed or withdrawn.

[Hook]*focus-window-hook*
A hook called when a window is given focus. It is called with 2 arguments: the current
window and the last window (could be nil).

[Hook]*place-window-hook*
A hook called whenever a window is placed by rule. Arguments are window group
and frame

[Hook]*start-hook*
A hook called when stumpwm starts.

[Hook]*internal-loop-hook*
A hook called inside stumpwm’s inner loop.
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[Hook]*focus-frame-hook*
A hook called when a frame is given focus. The hook functions are called with 2
arguments: the current frame and the last frame.

[Hook]*new-frame-hook*
A hook called when a new frame is created. The hook is called with the frame as an
argument.

[Hook]*message-hook*
A hook called whenever stumpwm displays a message. The hook function is passed
any number of arguments. Each argument is a line of text.

[Hook]*top-level-error-hook*
Called when a top level error occurs. Note that this hook is run before the error is
dealt with according to *top-level-error-action*.

[Hook]*focus-group-hook*
A hook called whenever stumpwm switches groups. It is called with 2 arguments: the
current group and the last group.

[Hook]*hooks-enabled-p*
Controls whether hooks will actually run or not

[Hook]*remove-split-hook*
A hook called when a split is removed. the hook is called with the current frame and
removed frame as arguments.

[Hook]*key-press-hook*
A hook called whenever a key under *top-map* is pressed. It is called with 3 argu-
ment: the key, the (possibly incomplete) key sequence it is a part of, and command
value bound to the key.

[Hook]*root-click-hook*
A hook called whenever there is a mouse click on the root window. Called with 4
arguments, the screen containing the root window, the button clicked, and the x and
y of the pointer.

[Hook]*click-hook*
A hook called whenever there is a mouse click. Called with 4 arguments, the screen
containing the window (or nil if there isn’t one), the button clicked, and the x and y
of the pointer.

[Hook]*mode-line-click-hook*
Called whenever the mode-line is clicked. It is called with 4 arguments, the mode-line,
the button clicked, and the x and y of the pointer.

[Hook]*urgent-window-hook*
A hook called whenever a window sets the property indicating that it demands the
user’s attention
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[Hook]*event-processing-hook*
A hook called inside stumpwm’s inner loop, before the default event processing takes
place. This hook is run inside (with-event-queue ...).

[Hook]*pre-command-hook*
Called before a command is called. It is called with 1 argument: the command as a
symbol.

[Hook]*post-command-hook*
Called after a command is called. It is called with 1 argument: the command as a
symbol.

[Hook]*menu-selection-hook*
Called after an item is selected in the windows menu. It is called with 1 argument:
the menu.

[Hook]*new-head-hook*
A hook called whenever a head is added. It is called with 2 arguments: the new head
and the current screen.

[Hook]*command-mode-end-hook*
A hook called whenever command mode is ended

[Hook]*command-mode-start-hook*
A hook called whenever command mode is started

[Hook]*destroy-mode-line-hook*
Called whenever the mode-line is destroyed. It is called with argument, the mode-line

[Hook]*quit-hook*
A hook called when stumpwm quits.

[Hook]*restart-hook*
A hook called when stumpwm restarts.

[Hook]*selection-notify-hook*
Called after a :selection-notify event is processed. It is called with 1 argument: the
selection as a string.

[Hook]*split-frame-hook*
A hook called when a frame is split. the hook is called with the old frame (window
is removed), and two new frames as arguments.
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17 Modules

A module is an ASDF system that adds additional functionality to StumpWM.
StumpWM searches for modules in the *data-dir*/modules directory. By default this is
~/.stumpwm.d/modules.

Officially supported modules exist in a separate repository within the StumpWM orga-
nization on github. You can install the latest copy by issuing make install-modules from
StumpWM’s root source directory. This will run:

git clone git@github.com:stumpwm/stumpwm-contrib.git ~/.stumpwm.d/modules

[Command]load-module name
Loads the contributed module with the given NAME.

[Function]list-modules
Return a list of the available modules.

[Variable]*load-path*
A list of paths in which modules can be found, by default it is populated by any asdf
systems found in ‘*module-dir*’ set from the configure script when StumpWM was
built, or later by the user using ‘add-to-load-path’

[Command]add-to-load-path path
If ‘PATH’ is not in ‘*LOAD-PATH*’ add it, check if ‘PATH’ contains an asdf system,
and if so add it to the central registry

[Function]init-load-path path
Recursively builds a list of paths that contain modules, then add them to the load
path. This is called each time StumpWM starts with the argument ‘*module-dir*’

[Function]find-module name
nil

17.1 Writing Modules

Make sure to read Chapter 18 [Hacking], page 105. If you are familiar with writing lisp
packages for ASDF then you can jump in and get started. In either case, quicklisp ships
a quickproject package that makes setting up a new module very easy. After installing
quicklisp (see the README.md for a link):

We’re going to put our new module in the modules/ directory of *data-dir* so that it
will be immediately loadable by StumpWM.

First make the directory new-module, then from a REPL issue:

(ql:quickload "quickproject")

(quickproject:make-project #p"~/.stumpwm.d/modules/new-module" :depends-on '(stumpwm) :name "new-module")

This will create:

-rw-rw-r-- 1 dave dave 68 Apr 6 19:38 package.lisp

-rw-rw-r-- 1 dave dave 53 Mar 16 2014 README.txt

-rw-rw-r-- 1 dave dave 271 Mar 16 2014 new-module.asd
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-rw-rw-r-- 1 dave dave 1.8K Apr 6 17:51 new-module.lisp

The file new-module.lisp will contain the actual implementation of your module. ASDF
requires two other files in order to understand how to load and compile your module. They
are new-module.asd and package.lisp. In our example, new-module.asd should contain:

(asdf:defsystem #:new-module

:serial t

:description "Describe new-module here"

:author "Anne N. O'Nymous"

:license "GPLv3"

:depends-on (#:stumpwm)

:components ((:file "package")

(:file "new-module"))) ; any other files you make go here

The package.lisp will contain:

(defpackage #:new-module

(:use #:cl :stumpwm))

With these two files defined, and the implementation written in new-module.lisp, you
should be able to load your module.

Before we load it, we have to add the path to our *load-path*. This can be accomplished
by running the following from a REPL:

(stumpwm:add-to-load-path "~/.stumpwm.d/modules/new-module")

You can also run this interactively with C-t ;, which is bound to the colon command.

Because we’ve put our module in a sub-directory of the default *module-dir*, it will
automatically get added to the *load-path* the next time StumpWM starts. If you choose
to develop your module somewhere else (e.g. ~/quicklisp/local-projects), then you’ll
have add

(add-to-load-path "~/quicklisp/local-projects/new-module")

to your .stumpwmrc.

When you’ve finished writing your module, you can distribute it however you see fit. If
it becomes very popular, or you would like the StumpWM devs to maintain it (and they
agree), you can have your module merged with the stumpwm-contrib repository on github,
just open a pull request to start the discussion.
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18 Hacking

18.1 Hacking: General Advice

1. Pay attention to file names and contents. If you’re making changes to mode-line related
code, don’t put it in core.lisp. If you’re introducing some completely new featureset,
consider putting all of the new code in a new file.

2. Does a command need to be user-visible (“interactive”) or is it just called by other
commands?

• If it’s not going to be user-visible, you can just use the familiar (defun foo ()

...) syntax.

• If you want the command to be used interactively, you use StumpWM’s
defcommand syntax, as in the examples below.

(defcommand test (foo bar)

((:string "How you're going to prompt for variable foo: ")

(:number "How you want to prompt for variable bar: "))

"This command is a test"

(body...))

(defcommand test2 () ()

"This is also a test"

(body...))

(defcommand title (args) (interactive-args)

"Doc string"

(body...))

So basically, inside the first set of parentheses after the function name, you specify
what (if any) arguments will be passed to the command. The second set of paren-
theses tells StumpWM how to get those arguments if they’re not explicitly passed
to the command. For example,

((:string "What do you want to do: "))

will read a string from the input the user provides. The quoted text is the prompt
the user will see. Of course, if you were to, say, call the command test, as defined
above, from another piece of code, it wouldn’t give the prompt as long as you fed
it arguments.

3. Note that all commands defined using the defcommand syntax are available both to
be called with C-t ; and from within other lisp programs, as though they had been
defun-ned (which, in fact, they have).

4. Any code that depends on external libraries or programs that some users might not
have installed should be packaged as a module and placed in the *data-dir*/modules/
directory.

5. Don’t be afraid to submit your patches to the StumpWM mailing list! It may not
immediately make it into the official git repository, but individual users might find it
useful and apply it to their own setup, or might be willing to offer suggestions on how
to improve the code.
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18.2 Hacking: Adding Documentation and Editing This
Manual

The manual is written in texinfo, so you may want to read that manual. The
stumpwm.texi.in is processed by StumpWM with some additional markup in the form of
three letter character entries at the beginning of a line. @@@ function defines functions,
%%% some-macro expands to that macro and its docstring, etc. Contributors are strongly
encouraged to add these items to this manual whenever something new is defined in a patch.
You can test if your texinfo edits are valid by generating them with make stumpwm.info,
and viewing the new stumpwm.info with info -f /path/to/stumpwm.info, or make

stumpwm.texi for the raw stuff.

%%% macro
@@@ function
### variable
$$$ hook

!!! StumpWM command

18.3 Hacking: Using git with StumpWM

For quite a while now, StumpWM has been using the git version control system for devel-
opment. If you’re using one of the official releases, you can get the bleeding-edge source
code from the official git repository with a single command:

$ git clone git@github.com:stumpwm/stumpwm.git

After this, you’ll have a complete git repository, along with the complete revision history
since the switch. Feel free to play around; git has some important features that actually
make this safe!

Before we get to that stuff, though, you’re going to want to tell git about yourself so
that your information is included in your commits and patches. The very minimum you’re
going to want to do is:

$ git config --global user.name "Anne N. O'Nymous"

$ git config --global user.email "anonymous@foo.org"

Be sure to check out the manual for git-config–there are several options you might
want to set, such as enabling colorized output or changing the editor and pager you use
when making commits and viewing logs.

For the sake of argument, let’s say you want to make some major changes to both
user.lisp and core.lisp, add a file called DANGEROUS_EXPERIMENT_DO_NOT_USE_OR_-

ELSE.lisp, and remove the manual because you’re too 1337 for such things. However, you
don’t want to break your entire StumpWM setup and start over. Thankfully, you don’t
have to. Before you get started, issue this command from the StumpWM source directory:

$ git checkout -b experimental

You should now find yourself in a new branch, called experimental. To confirm this,
type git branch; there should be an asterisk next to the branch you’re currently viewing.
At any time, you can type git checkout master to return to your master branch, and at
any time you can have as many branches of the project as you like. If you want to create a
new branch based not on the master branch but on your experimental branch, for example,
you’d type:

$ git checkout -b new-experiment experimental
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This will place you in a newly-created branch called “new-experiment” which should be
identical to your experimental branch as of the last commit (more on that soon). If you’re
actually typing out the directions, switch back to your old experimental branch like so:

$ git checkout experimental

Anyway, now that you have a new branch, create that new file with the long name, which
we’ll just call danger.lisp for brevity. Make whatever changes you want to it, and when
you’re done, tell git about your new file.

$ git add dangerous.lisp

Now, let’s pretend you’re done making changes. Tell git you’re done for now:

$ git commit

This will open up a prompt in your editor of choice for you to describe your changes. Try
to keep the first line short, and then add more explanation underneath (for an example, run
the command git log and take a look at some of the longer commit explanations). Save
that file and then do this:

$ git checkout master

$ ls

Then look for your new file. It’s not there! That’s because you’ve done all of your work
in another branch, which git is currently hiding from you so that you can “check out” the
branch called “master.” All is as it should be—your master repository is still safe.

$ git checkout experimental

Now, delete manual.lisp and stumpwm.texi. That’s right. Wipe them off the face
of the Earth, or at least off the hard drive of your computer. When you’re done, you
don’t have to tell git you’ve deleted them; it’ll figure it out on its own (though things may
not compile properly unless you edit Makefile.in and stumpwm.asd. Anyway, go ahead
and edit core.lisp and user.lisp. Really break ’em. Run free! When you’re done, do
another commit, as above, and give it a stupid title like “lolz i b0rked stUmpwm guys
wTF!?!?!!111!” Now try to compile. Just try. It won’t work. If it does, you’re some kind
of savant or something. Keep up the good work. If you’ve actually managed to break
StumpWM like you were supposed to, never fear! You have two options at this point.

One is to go back to the master branch (with another git checkout) and just delete your
experimental branch, like so:

$ git branch -D

The “-D” means to force a delete, even if the changes you’ve made aren’t available
elsewhere. A “-d” means to delete the branch if and only if you’ve merged the changes in
elsewhere.

The other option is to create patches for each of your commits so far, delete the branch,
and then apply any working/wanted patches in a new branch. Create your patches (after
committing) like so:

$ git format-patch -o patches origin

(Before doing that you can review your changes with git log origin..)

You can also use the format-patch command to create a patch of working code to send
in to the mailing list.
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A developer might ask you to try out something they’re working on. To fetch their
master branch, you’d do this:

$ git remote add -f -m master -t master foo git://bar.org/~foo/stumpwm

Here, “foo” is the shorthand name you’ll use to refer to that repository in the future.
To checkout a local copy of that repository, you’d then do

$ git checkout --track -b foo-master foo/master

Later you could use git pull foo to update while looking at that branch (and note that
git pull with no arguments, in the master branch, will update your StumpWM from the
official repository).

Finally, if you want to move your experimental changes into your master branch, you’d
checkout your master branch and run:

$ git merge experimental

If there are file conflicts, git diff will show you where they are; you have to fix them
by hand. When you’re done, do another

$ git commit -a

to finalize the changes to your master branch. You can then delete your experimental
branch. Alternately, you can wait until your changes (assuming you sent them in) make it
into the official repository before deleting your experimental branch.

18.4 Sending Patches

While patches are still welcome on the mailing list, StumpWM’s development has mostly
migrated to github’s issue tracker. This means you can open a pull request to submit a
patch to StumpWM. The following guidelines apply to pull requests and patches sent to
the mailing list.

• Make sure it applies clean to the main git repository

• Ensure that you aren’t introducing tabs, extra blank lines, or whitespace at the end of
lines.

• Ensure your patch doesn’t contain irrelevant indenting or reformatting changes.

• Try to make your patch address a single issue. If your patch changes two unrelated
issues, break them into two seperate patches that can stand on their own.

• Don’t send intermediate patches. When you’re working on a feature you might make
several commits to your local repository as you refine it and work out the bugs. When
it’s polished and ready to ship, send it as one patch! Sometimes it makes sense to
send it as multiple patches if each patch contains a discrete feature or bug fix that can
stand on its own. If one of your patches changes code that was added or modified in
an earlier patch, consider merging them together and sending them as one.
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19 Advanced Configuration

[Variable]*default-package*
This is the package eval reads and executes in. You might want to set this to :stumpwm
if you find yourself using a lot of internal stumpwm symbols. Setting this variable
anywhere but in your rc file will have no effect.

[Variable]*default-bg-color*
Default color for the desktop background.

[Function]run-commands &rest commands
Run each stumpwm command in sequence. This could be used if you’re used to
ratpoison’s rc file and you just want to run commands or don’t know lisp very well.
One might put the following in one’s rc file:

(stumpwm:run-commands

"escape C-z"

"exec firefox"

"split")

[Variable]*startup-message*
This is the message StumpWM displays when it starts. Set it to NIL to suppress.

[Variable]*list-hidden-groups*
Controls whether hidden groups are displayed by ’groups’ and ’vgroups’ commands

[Macro]defprogram-shortcut name &key command props map key pullp
pull-name pull-key

Default Values:

command (string-downcase (string stumpwm::name))

props `'(:class ,(string-capitalize stumpwm::command))

map 'stumpwm:*top-map*

key `(stumpwm:kbd

,(stumpwm:concat "H-"

(subseq stumpwm::command 0 1)))

pullp nil

pull-name (stumpwm::intern1

(stumpwm:concat (string stumpwm::name) "-PULL"))

pull-key `(stumpwm:kbd

,(stumpwm:concat "H-M-"

(subseq stumpwm::command 0 1)))

Define a command and key binding to run or raise a program. If pullp is set, also
define a command and key binding to run or pull the program.

[Variable]*initializing*
True when starting stumpwm. Use this variable in your rc file to run code that should
only be executed once, when stumpwm starts up and loads the rc file.

[Command]loadrc
Reload the ~/.stumpwmrc file.
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[Variable]*ignore-wm-inc-hints*
Set this to T if you never want windows to resize based on incremental WM HINTs,
like xterm and emacs.

[Variable]*max-last-message-size*
how many previous messages to keep.

[Variable]*module-dir*
The location of the contrib modules on your system.

[Function]set-module-dir dir
Sets the location of the for StumpWM to find modules

[Variable]*mouse-focus-policy*
The mouse focus policy decides how the mouse affects input focus. Possible values
are :ignore, :sloppy, and :click. :ignore means stumpwm ignores the mouse. :sloppy
means input focus follows the mouse; the window that the mouse is in gets the focus.
:click means input focus is transfered to the window you click on.

If *MOUSE-FOCUS-POLICY* holds any value other than those listed above, mouse
focus will behave as though it contains :IGNORE

[Variable]*resize-hides-windows*
Set to T to hide windows during interactive resize

[Variable]*root-click-focuses-frame*
Set to NIL if you don’t want clicking the root window to focus the frame containing
the pointer.

[Variable]*suppress-frame-indicator*
Set this to T if you never want to see the frame indicator.

[Variable]*suppress-window-placement-indicator*
Set to T if you never want to see messages that windows were placed according to
rules.

[Variable]*text-color*
The color of message text.

[Variable]*draw-in-color*
When NIL color formatters are ignored.

[Variable]*timeout-frame-indicator-wait*
The amount of time a frame indicator timeout takes.

[Variable]*top-level-error-action*
If an error is encountered at the top level, in STUMPWM-INTERNAL-LOOP, then
this variable decides what action shall be taken. By default it will print a message to
the screen and to *standard-output*.

Valid values are :message, :break, :abort. :break will break to the debugger. This can
be problematic because if the user hit’s a mapped key the ENTIRE keyboard will be
frozen and you will have to login remotely to regain control. :abort quits stumpwm.
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Command and Function Index

(
(setf getenv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A
act-on-matching-windows . . . . . . . . . . . . . . . . . . . . . 47
add-fullscreen-in-frame-rule . . . . . . . . . . . . . . . 41
add-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
add-hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
add-minor-mode-scope . . . . . . . . . . . . . . . . . . . . . . . . 75
add-screen-mode-line-formatter . . . . . . . . . . . . . 56
add-to-load-path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
argument-line-end-p . . . . . . . . . . . . . . . . . . . . . . . . . . 87
argument-pop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
argument-pop-rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
autodisable-minor-mode . . . . . . . . . . . . . . . . . . . . . . 73
autoenable-minor-mode . . . . . . . . . . . . . . . . . . . . . . . 72

B
balance-frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
banish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
bar-zone-color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
bind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C
call-and-exit-kmap . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
cancel-key-p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
cancel-timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
change-default-layout . . . . . . . . . . . . . . . . . . . . . . 3, 5
change-default-split-ratio . . . . . . . . . . . . . . . . 3, 5
change-layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5
change-split-ratio . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5
class-re-p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
classed-p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
clear-window-marks . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
clear-window-placement-rules . . . . . . . . . . . . . . . 46
colon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
command-menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
command-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
completing-read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
copy-last-message . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
copy-unhandled-error . . . . . . . . . . . . . . . . . . . . . . . . 81
curframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
current-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
current-minor-modes . . . . . . . . . . . . . . . . . . . . . . . . . . 74
current-screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
current-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D
data-dir-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
defcommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
defcommand-alias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
define-descended-minor-mode-scope . . . . . . . . . 75
define-frame-preference . . . . . . . . . . . . . . . . . . . . . 45
define-fullscreen-in-frame-rule . . . . . . . . . . . . 41
define-interactive-keymap . . . . . . . . . . . . . . . . . . . 24
define-key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
define-minor-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
define-minor-mode-scope . . . . . . . . . . . . . . . . . . . . . 75
define-remapped-keys . . . . . . . . . . . . . . . . . . . . . . . . 18
define-stumpwm-command . . . . . . . . . . . . . . . . . . . . . . 81
define-stumpwm-type . . . . . . . . . . . . . . . . . . . . . . . . . . 27
define-window-slot . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
defprogram-shortcut . . . . . . . . . . . . . . . . . . . . . . . . 109
delete-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
describe-command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
describe-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
describe-key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
describe-variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
disable-minor-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
dump-desktop-to-file . . . . . . . . . . . . . . . . . . . . . . . . 53
dump-group-to-file . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
dump-screen-to-file . . . . . . . . . . . . . . . . . . . . . . . . . . 53
dump-window-placement-rules . . . . . . . . . . . . . . . . 46
dyn-blacklist-command . . . . . . . . . . . . . . . . . . . . . . . . 5
dyn-unblacklist-command . . . . . . . . . . . . . . . . . . . . . . 5
dynamic-group-default-split-ratio . . . . . . . . . . . 5
dynamic-group-head-placement-policy . . . . . . . . 5
dynamic-group-master-layout . . . . . . . . . . . . . . . . . 4
dynamic-group-overflow-policy . . . . . . . . . . . . . . . 5
dynamic-group-p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

E
echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
echo-date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
echo-frame-windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
echo-string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
echo-windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
enable-minor-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
enable-mode-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
enable-when . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
err . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
eval-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
exchange-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
expose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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F
fclear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
final-key-p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
find-minor-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
find-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
flatten-floats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
float-this . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
fnext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
fnext-in-head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
focus-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
forget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
format-with-on-click-id . . . . . . . . . . . . . . . . . . . . . 59
fother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
fprev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
fprev-in-head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
frame-windowlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
fselect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
fullscreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

G
get-x-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
getenv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
getsel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
gkill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
gkill-other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
gmerge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gmove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
gmove-and-follow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
gmove-marked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
gnew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gnew-dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 61
gnew-float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gnewbg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gnewbg-dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 61
gnewbg-float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gnext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gnext-with-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gprev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
gprev-with-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
grab-pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
gravity-coords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
grename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
group-add-head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
group-add-window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
group-after-resize-head . . . . . . . . . . . . . . . . . . . . . 64
group-before-resize-head . . . . . . . . . . . . . . . . . . . . 64
group-button-press . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
group-current-head . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
group-current-window . . . . . . . . . . . . . . . . . . . . . . . . 63
group-delete-window . . . . . . . . . . . . . . . . . . . . . . . . . . 63
group-focus-window . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
group-indicate-focus . . . . . . . . . . . . . . . . . . . . . . . . 63
group-lost-focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
group-move-request . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
group-raise-request . . . . . . . . . . . . . . . . . . . . . . . . . . 63

group-remove-head . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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