vec4.h
1/*
2** ClanLib SDK
3** Copyright (c) 1997-2020 The ClanLib Team
4**
5** This software is provided 'as-is', without any express or implied
6** warranty. In no event will the authors be held liable for any damages
7** arising from the use of this software.
8**
9** Permission is granted to anyone to use this software for any purpose,
10** including commercial applications, and to alter it and redistribute it
11** freely, subject to the following restrictions:
12**
13** 1. The origin of this software must not be misrepresented; you must not
14** claim that you wrote the original software. If you use this software
15** in a product, an acknowledgment in the product documentation would be
16** appreciated but is not required.
17** 2. Altered source versions must be plainly marked as such, and must not be
18** misrepresented as being the original software.
19** 3. This notice may not be removed or altered from any source distribution.
20**
21** Note: Some of the libraries ClanLib may link to may have additional
22** requirements or restrictions.
23**
24** File Author(s):
25**
26** Magnus Norddahl
27** Mark Page
28** Harry Storbacka
29*/
30
31#pragma once
32
33#include <cmath>
34#include "vec2.h"
35#include "vec3.h"
36
37namespace clan
38{
41
42 template<typename Type>
43 class Vec2;
44
45 template<typename Type>
46 class Vec3;
47
48 template<typename Type>
49 class Vec4;
50
51 template<typename Type>
52 class Mat2;
53
54 template<typename Type>
55 class Mat3;
56
57 template<typename Type>
58 class Mat4;
59
60 template<typename Type>
61 class Sizex;
62
63 template<typename Type>
64 class Pointx;
65
66 class Angle;
67
73 template<typename Type>
74 class Vec4
75 {
76 public:
77 typedef Type datatype;
78
79 union { Type x; Type s; Type r; };
80 union { Type y; Type t; Type g; };
81 union { Type z; Type u; Type b; };
82 union { Type w; Type v; Type a; };
83
84 Vec4() : x(0), y(0), z(0), w(0) { }
85 explicit Vec4(const Type &scalar) : x(scalar), y(scalar), z(scalar), w(scalar) { }
86 explicit Vec4(const Vec2<Type> &copy, const Type &p3, const Type &p4) { x = copy.x; y = copy.y; z = p3; w = p4; }
87 explicit Vec4(const Vec2<Type> &copy, const Vec2<Type> &copy34) { x = copy.x; y = copy.y; z = copy34.x; w = copy34.y; }
88 explicit Vec4(const Vec3<Type> &copy, const Type &p4) { x = copy.x; y = copy.y; z = copy.z; w = p4; }
89 explicit Vec4(const Type &p1, const Type &p2, const Type &p3, const Type &p4) : x(p1), y(p2), z(p3), w(p4) { }
90 explicit Vec4(const Type &p1, const Type &p2, const Vec2<Type> &copy34) : x(p1), y(p2), z(copy34.x), w(copy34.y) { }
91 explicit Vec4(const Type *array_xyzw) : x(array_xyzw[0]), y(array_xyzw[1]), z(array_xyzw[2]), w(array_xyzw[3]) { }
92
98 static Vec4<Type> normalize3(const Vec4<Type> &vector);
99
105 static Vec4<Type> normalize4(const Vec4<Type> &vector);
106
114 static Type dot3(const Vec4<Type>& vector1, const Vec4<Type>& vector2) { return vector1.x*vector2.x + vector1.y*vector2.y + vector1.z*vector2.z; }
115
123 static Type dot4(const Vec4<Type>& vector1, const Vec4<Type>& vector2) { return vector1.x*vector2.x + vector1.y*vector2.y + vector1.z*vector2.z + vector1.w*vector2.w; }
124
130 static Vec4<Type> cross3(const Vec4<Type>& vector1, const Vec4<Type>& vector2);
131
141 static Vec4<Type> rotate3(const Vec4<Type>& vector, const Angle &angle, const Vec4<Type>& axis);
142
149 static Vec4<Type> round(const Vec4<Type>& vector);
150
156 static bool is_equal(const Vec4<Type> &first, const Vec4<Type> &second, Type epsilon)
157 {
158 Type diff_x = second.x - first.x; Type diff_y = second.y - first.y; Type diff_z = second.z - first.z; Type diff_w = second.w - first.w;
159 return (diff_x >= -epsilon && diff_x <= epsilon && diff_y >= -epsilon && diff_y <= epsilon && diff_z >= -epsilon && diff_z <= epsilon && diff_w >= -epsilon && diff_w <= epsilon);
160 }
161
162 void set_xy(const Vec2<Type> &new_v) { x = new_v.x; y = new_v.y; }
163 void set_zw(const Vec2<Type> &new_v) { z = new_v.x; w = new_v.y; }
164
170 Type length3() const;
171
177 Type length4() const;
178
184
190
197 Type dot3(const Vec4<Type>& vector) const { return x*vector.x + y*vector.y + z*vector.z; }
198
205 Type dot4(const Vec4<Type>& vector) const { return x*vector.x + y*vector.y + z*vector.z + w*vector.w; }
206
212 Angle angle3(const Vec4<Type>& vector) const;
213
219 Type distance3(const Vec4<Type>& vector) const;
220
226 Type distance4(const Vec4<Type>& vector) const;
227
234 Vec4<Type> &cross3(const Vec4<Type>& vector);
235
244 Vec4<Type> &rotate3(const Angle &angle, const Vec4<Type>& axis);
245
252
257 bool is_equal(const Vec4<Type> &other, Type epsilon) const { return Vec4<Type>::is_equal(*this, other, epsilon); }
258
260 void operator += (const Vec4<Type>& vector) { x += vector.x; y += vector.y; z += vector.z; w += vector.w; }
261
263 void operator += (Type value) { x += value; y += value; z += value; w += value; }
264
266 void operator -= (const Vec4<Type>& vector) { x -= vector.x; y -= vector.y; z -= vector.z; w -= vector.w; }
267
269 void operator -= (Type value) { x -= value; y -= value; z -= value; w -= value; }
270
272 Vec4<Type> operator - () const { return Vec4<Type>(-x, -y, -z, -w); }
273
275 void operator *= (const Vec4<Type>& vector) { x *= vector.x; y *= vector.y; z *= vector.z; w *= vector.w; }
276
278 void operator *= (Type value) { x *= value; y *= value; z *= value; w *= value; }
279
281 void operator /= (const Vec4<Type>& vector) { x /= vector.x; y /= vector.y; z /= vector.z; w /= vector.w; }
282
284 void operator /= (Type value) { x /= value; y /= value; z /= value; w /= value; }
285
287 Vec4<Type> &operator = (const Vec4<Type>& vector) { x = vector.x; y = vector.y; z = vector.z; w = vector.w; return *this; }
288
290 bool operator == (const Vec4<Type>& vector) const { return ((x == vector.x) && (y == vector.y) && (z == vector.z) && (w == vector.w)); }
291
293 bool operator != (const Vec4<Type>& vector) const { return ((x != vector.x) || (y != vector.y) || (z != vector.z) || (w != vector.w)); }
294
296 bool operator < (const Vec4<Type>& vector) const { return w < vector.w || (w == vector.w && (z < vector.z || (z == vector.z && (y < vector.y || (y == vector.y && x < vector.x))))); }
297 };
298
300 template<typename Type>
301 Vec4<Type> operator + (const Vec4<Type>& v1, const Vec4<Type>& v2) { return Vec4<Type>(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z, v1.w + v2.w); }
302
304 template<typename Type>
305 Vec4<Type> operator + (Type s, const Vec4<Type>& v) { return Vec4<Type>(s + v.x, s + v.y, s + v.z, s + v.w); }
306
308 template<typename Type>
309 Vec4<Type> operator + (const Vec4<Type>& v, Type s) { return Vec4<Type>(v.x + s, v.y + s, v.z + s, v.w + s); }
310
312 template<typename Type>
313 Vec4<Type> operator - (const Vec4<Type>& v1, const Vec4<Type>& v2) { return Vec4<Type>(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z, v1.w - v2.w); }
314
316 template<typename Type>
317 Vec4<Type> operator - (Type s, const Vec4<Type>& v) { return Vec4<Type>(s - v.x, s - v.y, s - v.z, s - v.w); }
318
320 template<typename Type>
321 Vec4<Type> operator - (const Vec4<Type>& v, Type s) { return Vec4<Type>(v.x - s, v.y - s, v.z - s, v.w - s); }
322
324 template<typename Type>
325 Vec4<Type> operator * (const Vec4<Type>& v1, const Vec4<Type>& v2) { return Vec4<Type>(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z, v1.w * v2.w); }
326
328 template<typename Type>
329 Vec4<Type> operator * (Type s, const Vec4<Type>& v) { return Vec4<Type>(s * v.x, s * v.y, s * v.z, s * v.w); }
330
332 template<typename Type>
333 Vec4<Type> operator * (const Vec4<Type>& v, Type s) { return Vec4<Type>(v.x * s, v.y * s, v.z * s, v.w * s); }
334
336 template<typename Type>
337 Vec4<Type> operator / (const Vec4<Type>& v1, const Vec4<Type>& v2) { return Vec4<Type>(v1.x / v2.x, v1.y / v2.y, v1.z / v2.z, v1.w / v2.w); }
338
340 template<typename Type>
341 Vec4<Type> operator / (Type s, const Vec4<Type>& v) { return Vec4<Type>(s / v.x, s / v.y, s / v.z, s / v.w); }
342
344 template<typename Type>
345 Vec4<Type> operator / (const Vec4<Type>& v, Type s) { return Vec4<Type>(v.x / s, v.y / s, v.z / s, v.w / s); }
346
347 template<typename Type>
349 {
350 return Vec4<Type>(
351 matrix[0 * 4 + 0] * v.x + matrix[0 * 4 + 1] * v.y + matrix[0 * 4 + 2] * v.z + matrix[0 * 4 + 3] * v.w,
352 matrix[1 * 4 + 0] * v.x + matrix[1 * 4 + 1] * v.y + matrix[1 * 4 + 2] * v.z + matrix[1 * 4 + 3] * v.w,
353 matrix[2 * 4 + 0] * v.x + matrix[2 * 4 + 1] * v.y + matrix[2 * 4 + 2] * v.z + matrix[2 * 4 + 3] * v.w,
354 matrix[3 * 4 + 0] * v.x + matrix[3 * 4 + 1] * v.y + matrix[3 * 4 + 2] * v.z + matrix[3 * 4 + 3] * v.w);
355 }
356
357 template<typename Type>
359 {
360 return Vec4<Type>(
361 matrix[0 * 4 + 0] * v.x + matrix[1 * 4 + 0] * v.y + matrix[2 * 4 + 0] * v.z + matrix[3 * 4 + 0] * v.w,
362 matrix[0 * 4 + 1] * v.x + matrix[1 * 4 + 1] * v.y + matrix[2 * 4 + 1] * v.z + matrix[3 * 4 + 1] * v.w,
363 matrix[0 * 4 + 2] * v.x + matrix[1 * 4 + 2] * v.y + matrix[2 * 4 + 2] * v.z + matrix[3 * 4 + 2] * v.w,
364 matrix[0 * 4 + 3] * v.x + matrix[1 * 4 + 3] * v.y + matrix[2 * 4 + 3] * v.z + matrix[3 * 4 + 3] * v.w);
365 }
366
367 template<typename Type>
368 inline Type Vec4<Type>::length3() const { return (Type)floor(sqrt(float(x*x + y*y + z*z)) + 0.5f); }
369
370 template<>
371 inline double Vec4<double>::length3() const { return sqrt(x*x + y*y + z*z); }
372
373 template<>
374 inline float Vec4<float>::length3() const { return sqrt(x*x + y*y + z*z); }
375
376 template<typename Type>
377 inline Type Vec4<Type>::length4() const { return (Type)floor(sqrt(float(x*x + y*y + z*z + w*w)) + 0.5f); }
378
379 template<>
380 inline double Vec4<double>::length4() const { return sqrt(x*x + y*y + z*z + w*w); }
381
382 template<>
383 inline float Vec4<float>::length4() const { return sqrt(x*x + y*y + z*z + w*w); }
384
393
395}
Angle class.
Definition: angle.h:60
4D matrix
Definition: mat4.h:78
2D vector
Definition: vec2.h:76
Type y
Definition: vec2.h:81
Type x
Definition: vec2.h:80
3D vector
Definition: vec3.h:75
Type z
Definition: vec3.h:81
Type y
Definition: vec3.h:80
Type x
Definition: vec3.h:79
4D vector
Definition: vec4.h:75
Type u
Definition: vec4.h:81
Type s
Definition: vec4.h:79
bool operator!=(const Vec4< Type > &vector) const
!= operator.
Definition: vec4.h:293
Type a
Definition: vec4.h:82
Type r
Definition: vec4.h:79
Type z
Definition: vec4.h:81
static Vec4< Type > rotate3(const Vec4< Type > &vector, const Angle &angle, const Vec4< Type > &axis)
Rotate a vector around an axis. Same as glRotate[f|d](angle, a);.
Vec4(const Vec2< Type > &copy, const Type &p3, const Type &p4)
Definition: vec4.h:86
Vec4()
Definition: vec4.h:84
void operator*=(const Vec4< Type > &vector)
*= operator.
Definition: vec4.h:275
Vec4< Type > & normalize3()
Normalizes this vector (not taking into account the w ordinate)
static bool is_equal(const Vec4< Type > &first, const Vec4< Type > &second, Type epsilon)
Returns true if equal within the bounds of an epsilon.
Definition: vec4.h:156
Type dot3(const Vec4< Type > &vector) const
Dot products this vector with an other vector (not taking into account the w ordinate).
Definition: vec4.h:197
Type y
Definition: vec4.h:80
Vec4(const Type &scalar)
Definition: vec4.h:85
bool operator==(const Vec4< Type > &vector) const
== operator.
Definition: vec4.h:290
static Vec4< Type > cross3(const Vec4< Type > &vector1, const Vec4< Type > &vector2)
Calculate the cross product between two vectors (not taking into account the w ordinate).
Type x
Definition: vec4.h:79
void set_xy(const Vec2< Type > &new_v)
Definition: vec4.h:162
Type v
Definition: vec4.h:82
Vec4< Type > operator-() const
operator.
Definition: vec4.h:272
Angle angle3(const Vec4< Type > &vector) const
Calculate the angle between this vector and an other vector (not taking into account the w ordinate).
Vec4< Type > & normalize4()
Normalizes this vector (taking into account the w ordinate)
static Vec4< Type > round(const Vec4< Type > &vector)
Rounds all components on a vector.
Type distance3(const Vec4< Type > &vector) const
Calculate the distance between this vector and an other vector (not taking into account the w ordinat...
Vec4< Type > & rotate3(const Angle &angle, const Vec4< Type > &axis)
Rotate this vector around an axis. Same as glRotate[f|d](angle, a);.
static Vec4< Type > normalize4(const Vec4< Type > &vector)
Normalizes a vector (taking into account the w ordinate)
void operator+=(const Vec4< Type > &vector)
+= operator.
Definition: vec4.h:260
Vec4(const Vec3< Type > &copy, const Type &p4)
Definition: vec4.h:88
Vec4< Type > & operator=(const Vec4< Type > &vector)
= operator.
Definition: vec4.h:287
Vec4(const Type &p1, const Type &p2, const Type &p3, const Type &p4)
Definition: vec4.h:89
Type distance4(const Vec4< Type > &vector) const
Calculate the distance between this vector and an other vector (taking into account the w ordinate).
Vec4(const Vec2< Type > &copy, const Vec2< Type > &copy34)
Definition: vec4.h:87
bool operator<(const Vec4< Type > &vector) const
< operator.
Definition: vec4.h:296
Type w
Definition: vec4.h:82
Vec4< Type > & round()
Rounds all components on this vector.
Type dot4(const Vec4< Type > &vector) const
Dot products this vector with an other vector (taking into account the w ordinate).
Definition: vec4.h:205
static Type dot3(const Vec4< Type > &vector1, const Vec4< Type > &vector2)
Dot products between two vectors (not taking into account the w ordinate).
Definition: vec4.h:114
bool is_equal(const Vec4< Type > &other, Type epsilon) const
Returns true if equal within the bounds of an epsilon.
Definition: vec4.h:257
Vec4(const Type *array_xyzw)
Definition: vec4.h:91
void operator/=(const Vec4< Type > &vector)
/= operator.
Definition: vec4.h:281
Type datatype
Definition: vec4.h:77
void operator-=(const Vec4< Type > &vector)
-= operator.
Definition: vec4.h:266
Vec4(const Type &p1, const Type &p2, const Vec2< Type > &copy34)
Definition: vec4.h:90
static Type dot4(const Vec4< Type > &vector1, const Vec4< Type > &vector2)
Dot products between two vectors (taking into account the w ordinate).
Definition: vec4.h:123
Type b
Definition: vec4.h:81
Vec4< Type > & cross3(const Vec4< Type > &vector)
Calculate the cross product between this vector and an other vector (not taking into account the w or...
Type g
Definition: vec4.h:80
static Vec4< Type > normalize3(const Vec4< Type > &vector)
Normalizes a vector (not taking into account the w ordinate)
void set_zw(const Vec2< Type > &new_v)
Definition: vec4.h:163
Type t
Definition: vec4.h:80
Vec2< Type > operator/(const Vec2< Type > &v1, const Vec2< Type > &v2)
/ operator.
Definition: vec2.h:302
Vec4< unsigned char > Vec4ub
Definition: vec4.h:385
Type length4() const
Returns the length (magnitude) of this vector (taking into account the w ordinate).
Definition: vec4.h:377
Vec4< unsigned int > Vec4ui
Definition: vec4.h:389
Vec4< char > Vec4b
Definition: vec4.h:386
Vec4< float > Vec4f
Definition: vec4.h:391
Vec2< Type > operator-(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:278
Type length3() const
Returns the length (magnitude) of this vector (not taking into account the w ordinate).
Definition: vec4.h:368
Vec2< Type > operator+(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:266
Vec4< short > Vec4s
Definition: vec4.h:388
Vec4< int > Vec4i
Definition: vec4.h:390
Vec4< double > Vec4d
Definition: vec4.h:392
Vec2< Type > operator*(const Vec2< Type > &v1, const Vec2< Type > &v2)
operator.
Definition: vec2.h:290
Vec4< unsigned short > Vec4us
Definition: vec4.h:387
Definition: clanapp.h:36
@ angle
value is a color